
www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 11, NOVEMBER 1990 1293

The Evolving Philosophers Problem:
Dynamic Change Management

Jeff Kramer and Jeff Magee

Abstract-One of the major challenges in the provision of distributed
systems is the accommodation of evolutionary change. This may involve
modifications or extensions to the system which were not envisaged
at design time. Furthermore, in many application domains there is
a requirement that the system accommodate such change dynamically,
without stopping or disturbing the operation of those parts of the system
unaffected by the change. Since the description of software structure
(components and interconnections) provides a clear means for both sys-
tem comprehension and construction, it seems appropriate that changes
should also be specified as structural change, in terms of component
creation /deletion and connection/disconnection. These changes are then
applied to the operational system itself to produce the modified system.

This paper presents a model for dynamic change management which
separates structural concerns from component application concerns. This
separation of concerns permits the formulation of general structural
rules for change at the configuration level without the need to consider
application state, and the specification of application component actions
without prior knowledge of the actual structural changes which may be
introduced. In addition, the changes can be applied in such a way as to
leave the modified system in a consistent state, and cause no disturbance
to the unaffected part of the operational system. The model is applied to
an example problem, “evolving philosophers.” The principles described in
this model have been implemented and tested in the Conic environment
for distributed systems.

Index Terms-Change management, distributed systems, dynamic con-
figuration, system evolution.

I. INTRODUCTION
ISTRIBUTED computing systems are in widespread use in D commercial, industrial, and research establishments. One of

the major difficulties in the development and maintenance of
such systems is that of systems management, particularly with
respect to the management of change. Distributed systems need
to evolve as human needs change, technology changes, and the
application environment changes. It has been argued [18) that
the introduction of the computing system is itself a stimulus for
change. These changes may require modification of a function
already provided by the system, or extension by the introduction
of new functions. In general, these changes, termed evolutionary,
are difficult to accommodate as they cannot be predicted at
the time the system is designed. Consequently, we would like
systems to be sufficiently flexible to permit arbitrary, incremental
change. In addition, we believe that systems should be capable
of supporting such change dynamically, without interrupting the
processing of those parts of the system which are not directly
affected. Hence, it should be possible to direct changes at the
operational system itself.

Manuscript received July 6, 1989; revised May 8, 1990. Recommended by
N. Schneidewind. This work was supported by the SERC ACME Directorate
under Grant GEE62394 and by the CEC under the REX Project (2080).

The authors are with the Department of Computing, Imperial College of
Science, Technology, and Medicine, University of London, 180 Queen’s Gate,
London SW7 2B2, England.

IEEE Log Number 9038334.

Distributed systems potentially offer a flexible environment for
dynamic modification and extension [4], [151. The underlying
support mechanisms for change (software component creation,
binding, and deletion) are readily available. However, there has
been little suggestion as to how such dynamic change should
be specified, managed, and controlled. This paper describes an
approach based on a separation of concerns: functional concerns
of the application processing components which can be pro-
vided with a general capability for change independent of what
structural changes are introduced, and structural configuration
concerns for specifying structural change without the need to
consider application state,

Recent work on distributed software specification and con-
struction confirms the benefits of separating the software compo-
nent programming concerns from those of system configuration
[3], [15], [17]. A separate configuration specification is useful
both as a description of the system structure and to generate
the actual system. As for software construction, we believe that
change is well handled at the configuration level in terms of
software components and their interconnections [lo], [14]. Fig. 1
identifies the central role of configuration management which is
required to interface between the functional view of application
programming and the structural view of system configuration.
Changes are specified declaratively in terms of system structure
only. The system itself is modified by the application of proce-
dural change transactions, which include ordered sets of structural
and control actions. These change transactions are derived by
management from the change specifications. Hence, the system
evolves incrementally by the application of change specifications
as shown in Fig. 2. Alternatively, a change specification could
be derived by comparing the desired configuration specification
with that of the current system.

In addition to the means for specifying and performing change,
it is also necessary to provide facilities for controlling change
such that application consistency is preserved both while the
change is applied and subsequent to the change. This is the role
of change management.

What exactly are the required characteristics of a configuration
management system for managing dynamic change? Section I1
identifies the objectives of change management, and defines more
precisely the distributed system environment in which it is ex-
pected to operate. The form of interaction between management
and the application nodes (software components) is presented in
Section 111, defining the management view of node states and the
desirable properties which this provides. This leads to the devel-
opment of a management protocol in Section IV which describes
how change management is applied, illustrating the process with
some simple examples. It also briefly discusses the required
application contribution to the change process. This is followed
in Section V by a detailed example, the Evolving Philosophers.
Section VI extends the work to cover systems with more interde-
pendence, and illustrates the principles for the evolving philoso-

0098-5589/90/1100-1293$01.00 0 1990 IEEE

www.manaraa.com

1294

c o n f i g u r a t i o n / change
s m e c i f i c a t i o n

IEEE TRANS

Fig. 1 . System configuration and change management.

configuration
changes

configuration
specification

Configuration
Management

configuration
specification

configuration
specification

Configuration
Management

configuration
specification

Fig. 2. Evolution of a system by incremental changes.

phers problem. The concluding section of the paper discusses
other approaches to dynamic change management which range
from pragmatic support for procedure replacement to the more
formal transformational approach. The conclusions also examine
the adequacy of our approach and discuss its implications.

11. DYNAMIC CHANGE MANAGEMENT
This section identifies the objectives of change management,

and defines more precisely the distributed system environment
in which it is expected to operate. These objectives represent an
approach which clearly separates application specific functions
from structural configuration functions. As mentioned, the
intention is to provide an application independent configuration
management facility.

A. Objectives
Changes should be specified in terms of the system structure.
Systems, and in particular distributed systems, are constructed

in a modular way consisting of a configuration of software nodes.
We propose that system evolution at the level of programming
in the small [6] is at too low a level, being both too detailed
and impractical due to the tight coupling of program elements.
Instead, change should be supported at a component node level
(or levels) where the possibility exists for understanding the
effects of change and where the internode coupling is such that
change is both possible and pragmatic.

Change specifications should be declarative.
By this we mean that it should be the responsibility of the

configuration management system, not the user, to determine
the specific ordering of actual change operations applied to the
system. This clearly separates the change required (which is
application specific) from how it is to be executed. Config-

;ACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 1 1 , NOVEMBER 1YYO

uration management can exploit parallelism for implementing
changes. Declarative specifications leave such decisions to the
implementation mechanisms.

Change specifications should be independent of the algorithms,
protocols, and states of the application.

In order to provide generic configuration management, the
configuration management system which carries out the changes
should be independent of the application. Since changes are to
be specified in terms of the configuration structure, the paper
will demonstrate that dependence on aspects such as application
state can be abstracted to a general requirement for application
quiescence, and dependence on application algorithm to a need
for component connection initialization/finalization actions.

Changes should leave the system in a consistent state.
Informally, a consistent application state is one from which the

system can continue processing normally rather than progressing
towards an error state. It is usually expressed in terms of some
global system invariant. A system is viewed as moving from
one consistent state to the next. In fact, application transactions
modify the state of the application, and, while in progress, have
transient state distributed in the system. While transactions are
in progress the internal states of nodes may be mutually incon-
sistent. In order to avoid the loss of application transactions and
achieve a consistent state after change, a consistent application
state is required in the affected part of the system before the
change.

Changes should minimize the disruption to the application
system.

It should not be necessary to stop the whole of a running
application system to modify part of it. The management system
should, from the change specification, be able to determine a
minimal set of nodes which are affected by the change. The rest
of the system should be able to continue its execution normally.

These objectives have a number of consequences for both
the application and the configuration management system. In
particular, the management system must give the affected part
of a system the opportunity to reach a consistent state before
a change is performed. The management system does not force
changes but waits for the application to reach a consistent state.
This consistent state requires that there is no communication in
progress between the affected nodes nor with their environment.
Each node is said to be in a quiescent state. Further, the nodes
must remain quiescent while the change is executed. This gives
newly created nodes the opportunity to be initialized in a state
which is consistent with the rest of the system and nodes which
are being removed the opportunity to leave the system in a
consistent state. Later sections will describe how the affected
nodes are identified and controlled by management, and discuss
the application level responsibilities.

B. Distributed System Model

In order to provide a sound basis for a discussion on change
management, we first describe the environment and the assump-
tions made. We also briefly define the terms used.

System: A system is assumed to consist of a set of processing
nodes with directed connections indicating the communica-
tion paths between the nodes.
Node: A node is a processing entity which can initiate and
service transactions.
Connection: A connection is a directed communication path
from the initiator of the communication exchange to the
recipient (Fig. 3).

www.manaraa.com

KRAMER AND MAGEE: EVOLVING PHILOSOPHERS PROBLEM 1295

connection

Fig. 3. A connection.

A system may thus be represented as a directed graph
(Fig. 1) . The edges in the figure indicate that node N1 may
initiate and receive transactions with both of N2 and N4.
N 2 may only initiate transactions with N1, but may receive
transactions from nodes N1 and N3.
Transaction: A transaction is an exchange of information
between two and only two nodes, initiated by one of the
nodes. Transactions are the means by which the state of a
node is affected by other connected nodes in the system.
Transactions consist of a sequence of one or more message
exchanges between the two connected nodes. It is assumed
that transactions complete in bounded time and that the
initiator of a transaction is aware of its completion.

Fig. 4 illustrates valid examples of transactions. In prac-
tice they may consist of a remote procedure call (rpc) or
request-reply message exchange as in (a), or some sequence
or combination of rpc’s or message passing as shown in
(b). The only requirement is that one of the two parties
is identifiable as the initiator of the transaction and is
informed of the completion of the transaction. Completion
of transactions at the initiator is required to ensure correct
termination of the management protocol described later. We
assume only independent transactions, where completion of
a transaction does not depend on any other (possibly nested)
transactions with other nodes. Section VI discusses the
implication of relaxing this restriction to permit dependent
transactions, where completion is dependent on consequent
transactions with other nodes.
Change: A change is described in terms of modifications
to the structure (configuration) of the application system.
Changes take the form of node creation and deletion, and
connection establishment and removal. Changes are effected
by a Configuration Manager. Previous work [14] , [19] has
identified a set of management primitives for both specifying
and modifying the structure of systems. In abstract form
these are:

create N:T [at L]
Create node N of type T, optionally specify at
physical location L.
The name N must be unique within the system.
(For simplicity, T is omitted in later examples where
the type is obvious.)

Remove node N

Create a connection from node N1 to node N2.
(For simplicity, we omit the detail of multiple con-
nections between nodes since this does not alter the
algorithms presented in the following.)

Remove a connection between node N1 and node N2.
Consistency: This is determined by the re!ationship between
node application states and is usually described by some
global invariant (constraint) which must be preserved. For
local consistency of a node, it is necessary that there are no
partially complete transactions at the node.

remove N

link N1 to N 2

unlink N1 from N2

Initiator Recipient
(a) --b

complete

(b) b -
.... E

complete

Fig. 4. Examples of (two-party) transactions.

The next section describes the interface between management
and the application nodes and refines the notion of quiescence.

111. APPLICATION-MANAGEMENT INTERACTION
When performing configuration changes it is important that

application information is not lost and that the application is left
in a consistent state. To do this, the management system should
have an interface with the application which allows it to direct
the application towards an appropriate state for reconfiguration.
Further, the management system must be able to confirm that
the application has reached this state. The interface between
application and management system must be a generic one which
makes management independent of the particular application. To
meet this objective, application state is abstracted into a set of
configuration management states for each node. This set of states
provides sufficient information about application state to allow
the management system to perform changes which leave the
application in a consistent state. These configuration states and
the transitions between them are outlined below.

A. Node Configuration States and Transitions

The state transition diagram of Fig. 5 specifies the possible
states for an application node from the configuration viewpoint
(cf. process states from an operating system viewpoint). The
interaction between configuration management and the node
are indicated as transitions. These transitions are instigated by
configuration management (cf. “control actions” [8]) and should
be distinguished from the normal application level transactions
(“basic communications”).

B. Transitions

Each transition depicted in Fig. 5 represents the management
action which initiates the transition. Node application actions are
required to reach the destination management state (Fig. 6).

The temporary state involved in each transition gives a node
the opportunity to perform the initialization and finalization
actions necessary to preserve application consistency when it is
createdlremoved and when connections are linkedlunlinked.
The application indicates that these actions are complete by
asserting the destination state of the transition to the change
management system. Activate and passivate (Fig. 5) are the
transitions between the active and passive states described below.

C. States

A node in the active state can initiate, accept, and service
transactions.
A node in the passive state must continue to accept and
service transactions, but
1) it is not currently engaged in a transaction that it

initiated, and
2) it will not initiate new transactions.

www.manaraa.com

1296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 11, NOVEMBER 1990

link y n activate

ACTIVE

2 \ I passivate
remove

unlink

Fig. 5. Node state transitions.

management
action .-- perform assert(state)

actions

Fig. 6. Node transitions.

The particular state identified as necessary for reconfiguration
is the passive state. A node in the passive state must continue to
accept and service transactions while it is in the passive state, but
it must not initiate any new transactions as a result of accepting
or servicing transactions. This passive state is so defined as to
permit connected nodes to progress towards a passive state by
completing outstanding transactions. In addition it contributes
to system consistency by completing transactions. However, the
passive state is not sufficient for reconfiguration as it may still
be processing transactions initiated by other nodes.

D. Node Quiescence

For consistency during change we require, a stronger property,
viz. that the node is not within a transaction and will neither
receive nor initiate any new transactions. This property is called
quiescence of a node and is that state in which the node is both
passive and has no outstanding transactions which it must accept
and service. Such a state depends not only on the node itself, but
on the connected nodes.

Consequently, a node is quiescent i f
1) it is not currently engaged in a transaction

’ that it initiated, }passive
2) it will not initiate new transactions, }properties
3) it is not currently engaged in servicing a transaction, and
4) no transactions have been or will be initiated by other nodes

In the quiescent configuration state, the application state of
a node is both consistent and frozen. It is consistent in that
the application state does not contain the results of partially
completed transactions, and is frozen in that the application state
will not change as a result of new transactions. Quiescence is
significant for dynamic configuration changes since, in cases
such as unlinking, it permits a node to make decisions based
on a stable and consistent state regarding the particular actions
it should take before it is unlinked. For instance, the node may
pass a consistent uptodate version of its application state to its
environment before it is unlinked.

Our notion of quiescence is loosely based on earlier work
[131 which specified node behavior using a “quiescent invariant”:
the stable, steady properties of a node characterized by a local
invariant preserved by the node. Quiescence is also related to that
defined by Misra [20], except that the discussion there focuses
on traces and termination, whereas we focus on node state and
consistency. Misra defines a node as quiescent if it may not

which require service from this node.

produce further output. Our notion is stronger in the sense that
the trace produced by a quiescent node will not be extended by
any further output.

E. Resultant Properties for Systems Using
Independent Transactions

Given that the passive and quiescent states are desirable node
management states, we now show how they can be achieved
for systems constructed from independent transactions. From
Section 11, an independent transaction is a two party transaction
whose completion does not depend on any other transaction. In
these systems, a transaction serviced by a node may cause that
node to initiate transactions to other nodes, however, completion
of the service may not depend on completion of any transaction
which the node may initiate. Section VI discusses the extensions
required for dependent transactions.

The following propositions and justifications demonstrate the
reachability of the passive state, the relationship between passive
and quiescent states and the reachability of the quiescent state.

Proposition 1: Reachability of the Passive state.
In independent systems, a node can move from the active to the

passive state in bounded time, irrespective of the configuration
state (active or passive) of the nodes to which it is connected.

Justification I :
To be passive, the node must satisfy two conditions:
i) i t is not currently engaged in a transaction that it initiated:

A node will complete in bounded time any transaction
which it initiated since transactions complete in bounded
time and completion is independent of the completion
of transactions at other nodes. Transactions complete in
bounded time even if the recipient node is in the passive
state since passive nodes accept and service transactions.

ii) it will not initiate new transactions.
This property can be immediately satisfied by the ap-

plication.
For systems using independent transactions, we define the

passive set PS of a node Q, denoted PS(Q), to consist o f
1) the node Q
2) all nodes which can directly initiate transactions on Q, i.e.,

Proposition 2: Passive requirements for the Quiescent state.
In systems using independent transactions, Q is quiescent if

Justification 2:
A node is quiescent if
i) it is not currently engaged in a transaction that it initiated,

ii) it will not initiate new transactions,
iii) it is not currently engaged in servicing a transaction, and
iv) no transactions have been or will be initiated by other

nodes which require service from this node.
Conditions i) and ii) follow from the passive state of Q, i.e.,

Q is in PS(Q).
Conditions iii) and iv) follow from the passive states of the

nodes in PS(Q), i.e., if all nodes which can initiate transactions on
Q are also passive, then all transactions involving Q are complete
and no new ones will be initiated.

Hence Q is in a quiescent state.
Proposition 3: Reachability of the Quiescent state.
In systems using independent transactions, a node Q can move

from the active to the quiescent state in bounded time if all the
nodes in PS(Q) are directed to move into the passive state.

all nodes with connection arcs directed towards Q.

all nodes in PS(Q) are in the passive state.

Justification 3:

www.manaraa.com

KRAMER AND MAGEE: EVOLVING PHILOSOPHERS PROBLEM 1297

Since all nodes will achieve the passive state in bounded
time (Proposition l), and the passive state of all nodes in PS(Q)
imply quiescence of Q (Proposition 2), then Q will achieve the
quiescent state in bounded time.

This section has defined an interface through which a config-
uration manager communicates with and controls an application
node. Communication between configuration maqagement and
the node is synchronous in the sense that a management action is
always confirmed by the node. (For pragmatic reasons, it may be
necessary to support the forced removal of “rogue” nodes which
do not obey or react correctly to configuration commands. These
can be added as remove transitions from the active state.) Note
that the node configuration state is the only way that configuration
management can affect the application state. The passive state
has been carefully defined to be readily achievable by a node
by completion of any transactions which it initiated. Since
transactions complete in bounded time, the passive state can
be achieved in bounded time. Similarly, since the passive state
permits servicing of transactions initiated by connected nodes,
they too will be permitted to progress to a passive state. However,
for the configuration manager to achieve quiescence of some
target node, it is necessary to make the target node passive and
also to create a region of passive nodes (the passive set) around it.
This will achieve a stable situation where there are no incomplete
or active transactions. This together with the abstraction of
application state into configuration management states forms the
basis of the change protocol outlined in the next section.

IV. CHANGE MANAGEMENT PROTOCOL

A. Management View

In this section we outline a change protocol for systems
constructed from independent transactions. This protocol meets
the change management objectives of Section 11. In particular,
the objective of a declarative, as opposed to imperative, change
specification means that changes are specified using only struc-
tural actions create, remove, link, and unlink (see Section 11).
The activate and passivate actions on nodes are essentially an
implementation device which should not be visible to a user.
The following outlines a change protocol in which the change
transactions, including activate and passivate actions and the
ordering of execution, can be automatically derived from the
change specification (see Fig. 1).

1) Change Rules: The change protocol involves establishing
a region of quiescence, specified as the set of nodes required
to be passive, where the change is to occur. As mentioned
in Section 11, changes involve node creation and deletion, and
connection establishment and removal. We now examine each of
the possible changes in turn and present the rules for contributing
nodes to the passive set.

i) Node deletion -remove.
Rule: The precondition for removing a node N is that it is

quiescent and isolated. By isolated, we mean that it has no
connections directed to it from other nodes or from it to other
nodes.

Justification: An isolated node cannot affect the system and
so can be independently removed.

ii) Connection-link and unlink.
Rule: The precondition for either linking or unlinking is

that the node N from which the connection is directed must

this can be achieved by requiring that all nodes in PS(N) are in
the passive state.)

Justification: Quiescence of the initiator node ensures that its
state is consistent and frozen with respect to that connection,
thereby enabling connection initialization/finalization to occur in
a stable environment.

iii) Node Creat ion4reate .
Rule: The precondition is trivially true.
Justification: When a node is created it is initially isolated and

consequently must be in the quiescent state since it can neither
respond to nor initiate transactions on other nodes.

2) Change Transactions: A change transaction consists of a
set of partially ordered configuration actions (or commands),
which is derived from the structural change so as to satisfy the
preconditions outlined above. One possible algorithm for deriving
change transactions is outlined below.

Step 1: Determine the set of connections CS which must be
unlinked to isolate nodes to be removed [to satisfy i)]. From this,
together with the set of connections LS directly specified in link
or unlink directives, determine the set of nodes QS (quiescent
set) which must be made quiescent to satisfy i) and ii) above,
i.e.,

CS = {connections c I c is a connection to/from a node to be

LS = {connections 1 I 1 is a connection in a link/unlink

QS = {nodes n 1 n is the initiator node on a connection in

Step 2: Form the change passive set CPS as the union of

removed}

directive}

(CS U LS) or n is to be removed}.

passive sets PS of each node in QS, i.e.,

CPS = U P S (i) forall i in QS.

Step 3: Perform the configuration actions in the following order:
passivate
unlink
remove
create
link
activate
It should be noted that if the change management system

permits multiple change transactions to be performed in parallel
then the set of nodes which must be locked for a change is a
superset of the change passive set. In detail, the lock set is

<all nodes in the change passive set CPS>

(could be performed at any time before link)

<CPS - removed nodes + created nodes>

LockSct = CPS U {nodes n I n is a recipient node on a

connection in (CS U LS)}.

The lock set includes nodes to which connections are directed
so that a change transaction does not attempt to make a con-
nection to a node which has been deleted by another concurrent
transaction.

3) A Simple Example: In order to illustrate the management
view of the change protocol, we briefly describe some possible
changes for a simple client-server system. The system graph for
the client-server system is shown in Fig. 7.

i) Adding a client:
ii) Unlinking or

Removing a client C1:
iii) Removing the server S:

Change Passive Set = { }

Change Passive Set = {Cl}
Change Passive Set = {Cl, C2,

be in the quiescent state. (From Proposition 2, we know that c3, S } .

www.manaraa.com

1298 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 16, NO. 11, NOVEMBER 1990

i+ c3

Fig. 7. A simple client-server system.

S is passive when all client transactions have completed. In
order to replace the server S with a modified server S’, the
following change specification is provided:

remove S <and unlink dangling connections>

create S’
link C1 to S’, C2 to S’, C3 to S’

and the derived change transaction is as follows:

passivate C1, C2, C3, S & create S‘
unlink C1 from S, C2 from S , C3 from S

<unlink dangling connections>

remove S
link C1 to S’,C2 to S’,C3 to S’

activate C1, C2, C3,S’

B. Application Contribution

The description so far has concentrated on the management
view of change. System consistency is an application dependent
notion and in general requires nodes to contribute to its preserva-
tion. One of the main contributions that an application node must
make is preservation of the passive state, i.e., the application
must not initiate any new transactions, but must be prepared to
service transactions from other nodes. The change from active io
passive state is implemented in a node by converting the general
description of the passive state into an invariant constraint in
application terms (i.e., referring to local node variables) that
must be preserved by the node. When in the passive state, the
node confirms this by responding assert(passive) (Fig. 6) to
management.

Furthermore, in order for a newly connected application node
to preserve consistency, it must be given the opportunity to
initialize itself so as to be consistent with its new environment.
Similarly a node which is about to be disconnected must be given
the opportunity to clean up in order to leave its environment
in some consistent state. These opportunities are provided for
in the management protocol by the link and unlink transitions
(Fig. 5) where the node can, if necessary, execute such actions as
necessary. These actions may include communication with other
nodes. Again, completion of these actions is confirmed by an
assert(passive) response to management.

Obviously the actual actions which need to be executed
at these times are application dependent. However, these are
simplified by the fact that, by the change rules described above,
there is no transient information in the node. In general, these
actions may include the initiation of queries on connected
nodes. The complexity depends on the complexity of the
application and the autonomy of the node. This confirms
our intuition that, if a system is designed such that its
constituent nodes are tightly coupled and interdependent, then

the connection initialization/finalization actions are likely to be
correspondingly complex.

The application contribution is illustrated in the detailed ex-
ample in the next section.

V. EVOLVING PHILOSOPHERS

To illustrate the management scheme developed in the
preceding sections, it is applied to the Dining Philosopher’s
(Diners) problem [7] . Philosophers are arranged in a ring with
neighboring philosophers sharing a fork. A philosopher is either
thinking, hungry, or eating. To move from the hungry to the
eating state a philosopher must acquire both his left-hand and
right-hand fork. The solution presented below is a modification to
the fully distributed diners solution due to Chandy and Misra [5]
to permit dynamic change. First, we outline Chandy and Misra’s
solution for a static number of philosophers and then describe the
modifications necessary to permit arbitrary changes to a dining
philosopher system such as the addition/deletion (birth/death)
of philosophers and the merging/splitting of communities of
philosophers. Coping with these dynamic changes is the evolving
philosophers problem. Based on the change model, a solution is
described below. This solution has been implemented and tested
in the Conic environment for distributed programming [141, [15],
~ 9 1 .

A. Chandy and Misra’s Hygienic Solution to the Diners Problem

Each philosopher P, is implemented as a process which
communicates with its left- and right-hand neighbors by asyn-
chronous message passing. The system structure is depicted in
Fig. 8.

Chandy and Misra describe their solution informally as fol-
lows: “A fork is either clean or dirty. A fork being used to eat
with is dirty and remains dirty until it is cleaned. A clean fork
remains clean until it is used for eating. A philosopher cleans a
fork when mailing it (he is hygienic). An eating philosopher does
not satisfy requests for forks until he has finished eating.” When
not eating, philosophers defer requests for forks that are clean
and satisfy requests for forks that are dirty. This solution can be
considered to implement a precedence graph such that an edge
directed from a node U to v indicates that U has precedence over
v (Fig. 9).

In the diners solution a philosopher node U has precedence
over its neighbor v if and only if 1) U holds the fork and it is
clean, or 2) v holds the fork and it is dirty, or 3) the fork is in
transit from v to U . Chandy and Misra showed that if initially
all forks are dirty and located at philosophers such that the
precedence graph is acyclic i t will remain acyclic since 1) the
direction of an edge (from U to v) can only change when U starts
eating and 2) both edges on a philosopher are simultaneously
directed towards him when he starts eating. Chandy and Misra
prove that since immediately on finishing eating a philosopher
yields precedence to his neighbors, all hungry philosophers will
commence eating in finite time, i.e., no philosopher remains
hungry forever.

More precisely the algorithm is described as follows:
Messages:
forktokenl

reqtoken,
Boolean Variables:
f o w l) Philosopher holds fork f .
Wf(f 1

Passes fork f to neighbor which shares f (f can
take the value left or right).
Passes request token for fork f to neighbor.

Philosopher holds the request token

www.manaraa.com

KRAMER AND MAGEE: EVOLVING PHILOSOPHERS PROBLEM 1299

(R6) Philosopher eating to thinking transition:

cating,eating time expired => thinking := true;

eating := false

(R7) Philosopher thinking to hungry transition:

thinking,thinking time expired => hiirigry := triic;

thinking := false
Fig. 8. Schematic and structure of the diners system.

P4----t8-P3 P4------scP3

(a) (b)
Fig. 9 Precedence graph. (a) P1 hungry. (b) P1 eating.

for fork f.
Fork f is at philosopher and is dirty. dirty(f 1

thinking/hungry/eating: State of philosopher.
Initialization:
1) All forks are dirty.
2) Forks distributed among philosophers such that the prece-

3) If U and v are neighbors then either U holds the fork and v

The algorithm for each philosopher is described as a set of

(Rl) Requesting a fork f:

dence graph is acyclic.

the request token or vice versa.

rules guard=>action which form a single guarded command.

hungry,reqf(f) , N fork(f) => send(reqtokcnf);

reqf(f) := false

(R2) Releasing a fork f:

- eating, reqf(f),dirty(f) => scnd(forktokenf);
dirty(f) := false; fork(f) := false

B. An Evolving Community of Dining Philosophers

In the following we consider the creation of a ring (com-
munity) of philosophers, addition of a new philosopher (birth).
and deletion of an existing philosopher (death). Major changes
in the community are performed as the merging’splitting of
communities of philosophers.

I) Application Contribution for Dynamic Change: To permit
philosopher nodes to be subject to change we must extend the
above algorithm to support the management/application inter-
face described in Section 111. In particular, the algorithm must
support the passive state and provide initialization (finalization)
actions when a philosopher is linked (unlinked) to (from) another
philosopher. The consistency requirements in the system are:

i) that a fork is always shared between two adjacent, con-
nected philosophers, and

ii) that the precedence graph remains acyclic.
The base case of a single philosopher node is taken care of by

connecting i t to itself, thereby permitting it to possess two forks.
a) Philosopher Passive State: From the definition of passive

(Section 111) a philosopher is in the passive state if firstly, it is
not currently engaged in a transaction which it has initiated (i.e.,
it has not sent a reqtoken which has not yet been answered by
a forktoken) and secondly, it will not initiate new transactions,
i.e., it is not hungry and i t will not become hungry.

True when this philosopher is in the active man-
agement state.
True when this philosopher is in the passive state.
Management request to make philosopher active.
Management request to make philosopher passive.

active

passive
activate
passivate
(R7)* Philosopher thinking to hungry transition:

active,thinking,thinI;ing time expired =>
hungry := true; thinking := false

(R3) Receiving a request token for f: (R8) Passive to active transition:

a c t i v a t e => assert(active)
receive(reqtokenf) => reqf(f) := true

(R9) Active to passive management transition:

(R4) Receiving a fork token for f: - hungry.passivate = > assert (passive)

(R5) Philosopher hungry to eating transition: hungry. Since a philosopher can only initiate and be engaged in
transactions when it is in the hungry state, the above rules satisfy
the management requirements for active and passive states. Note
that, when neighboring philosophers are both passive, neither
is hungry. In this case, the shared fork will be dirty and the
precedence edge will be directed towards the holder of the dirty

hungry, fork(left), fork(right) =>
eating := true; hungry := false; dirty(lcft) := trur;

dirty(rig1it) := true; fork.

www.manaraa.com

1300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 11, NOVEMBER 1990

b) Philosopher Link and Unlink Actions: The following rules
deal with the actions required to unlink and link a connection
between philosophers.

Messages:
new-forlttoken, Passes new fork f to neighbor which shares

f for connection initialization.
new-reqtoken, Passes new request token for fork f to

neighbor.
link@,) Management request to initialize a connec-

tion to philosopher which shares fork f with
this philosopher.
Management request to finalize a connection
to philosopher which shares fork f with this
philosopher.
The unique identity of this philosopher.
The other fork from f that a philosopher uses
(e.g., other(1eft) = right).

unlink@,)

thisp
other(f)

(R10) Connection finalization:

unlink(p,) =>
fork(f) := false; reqf(f) := false; dirty(f) := false

assert (passive)

(R11) Initializing a connection top, where p, = thisp (i.e., this
philosopher)

link(p,),pf = thisp =>
fork(f) := true; reqf(f) := false; dirty(f) := true

assert (passive)

(R12) Initializing a connection to p, where p, > thisp (i.e., this
philosopher allocates fork)

link(pf),pf > thisp =>
if fork (other(f)) then {if the philosopher has

the other fork}

send (new-reqtoken,)

fork(f) := true; dirty(f) := true;

else

reqf(f) := true; send(new-forktokenf)

assert (passive)

(R13) Initializing a connection to pf where pf < thisp (i.e., the
other philosopher allocates fork)

link(pf),pf < thisp =>
receive(new-reqtoken,) => reqf(f) := true

or receive(new_forktoken,) => fork(f) := true;

dirty(f) := true

assert (passive)

Rule (R10) ensures that when a connection between two
philosophers is unlinked, the shared fork is removed. Rules (R11,
R,12, R13) are responsible for the allocation of forks when

When two philosophers are connected together, we can satisfy
fork sharing by ensuring that only one fork is allocated between
them. To achieve this, we assume that each philosopher has a
unique identity and that these identities have a total ordering.
The philosopher which precedes its neighbor in the total ordering
decides where a fork is to be allocated. Consequently only one
fork is allocated. To satisfy preservation of the acyclic precedence
graph, allocation must be such that at least one philosopher
ends up having two dirty forks or none. In the following, we
demonstrate that rules (R12) and (R13) maintain an acyclic
precedence graph for arbitrary changes.

2) Creating a Community of Philosophers: The following con-
figuration specification describes a ring of N philosopher pro-
cesses:

RING(p, N) ::
forall i : l..Ncreate p [i] ;

forall i : 1..N

link p[i] to p [(i mod N) + 11,
p [(i mod N) + 11 to p [i] ;

The corresponding change transaction in this case is simply the
specification with the added activate actions as follows:

forall i : 1..N activate p [i] .

To preserve the precedence graph invariant, the forks must be
distributed asymmetrically such that at least one philosopher has
no forks and correspondingly one has two forks (see initialization
conditions for the original algorithm). Rules (R12) and (R13)
achieve this since the identity of one philosopher must precede all
others in the total ordering. This philosopher will allocate forks
to both its neighbors (R12) and consequently have no forks itself.

3) Birth of a New Philosopher: The following configuration
specification adds a new philosopher x between existing neigh-
bors U and v, where the other neighbors of U and v are t and w,
respectively:

unlink U from w; unlink w from U

create x
link x to w; link x to U; link U to 2; link w to x

Applying the change algorithm of the previous section to
the above change specification produces the following change
transaction. From both the preconditions of unlink and link, the
quiescent set QS is determined as the two neighbors U, v of
the node to be created x. The change passive set is t , U, v, and
w. Since neither t nor w will initiate transactions on U or v to
request forks, U and v can make decisions based on the state of
their forks which will not change. For example, to insert a new
philosopher P6 between P5 and P1 in the system depicted in
Fig. 8, P5 and P1 must be quiescent since they are both linked
to each other and will be linked to the new philosopher. The
change passive set includes P2 and P4 as well. Note that, in the
change transaction outlined below, actions on the same line may
be executed in parallel.

connections are linked.
Rule (R11) deals with the trivial case where there is only

one philosopher which is connected to itself. In this case the
philosopher is allocated two dirty forks so that it can eat. Rules
(R12) and (R13) ensure that the global consistency requirements
of a system with two or more philosophers are not violated.

passivate t , U , w, w; create x
unlink U from U ; unlink w from U

link 2 to w; link x to U; link U to x; link w to 2

activate t , U, w, w, x

www.manaraa.com

KRAMER AND MAGEE: EVOLVING PHILOSOPHERS PROBLEM 1301

The fork shared by U and v will be discarded when they are
unlinked. On linking the pairs U and x, and x and v, the allocation
of the shared fork in each case will be made by one of the pair
such that one of each pair will end up with either two forks or
no forks..For instance, in the example above of the addition of
P6, P1 and P 5 will perform the allocation as they precede P 6 in
the total ordering. If the fork shared by P2 and P1 is currently
held by P1, then P1 will retain the dirty fork shared with P6;
and if P 5 does not have the fork shared with P4, then it will
allocate the other shared dirty fork to P6 (Fig. 10). This clearly
preserves the acyclic graph.

4) Death ofa Philosopher: Removal of a philosopher x with
neighbors U and v (where the opposite neighbors of U and v are
f and w, respectively) is specified by the following program:

remove x
link 'U to U ; link U to v

This results in the following change transaction:

passivate t , U , v, w, x
unlink U from z; unlink PI from 5

remove x
link v to U ; link U to 'U

activate t , U , v, w

This transaction ensures that U, v, and x will be in the quiescent
state before x is unlinked and removed. Consequently, on linking,
U and v can make decisions based on the state of their forks which
will not change. As before, allocation will ensure that one of the
pair ends up with two or no forks. For example, if in Fig. 11 we
removed philosopher P1, P2 would retain the dirty fork shared
with P 5 as it has the fork shared with P3, thereby preserving
acyclic precedence.

5) Merging Two Communities of Philosophers: Given two
communities (rings) of philosophers, called pa of size N and pb
of size M , respectively, Fig. 12 shows which connections must
be unlinked and which must be linked to merge the two rings of
philosophers. The shaded nodes indicate the change passive set.
The change is specified as follows:

link

f r o m pa [11,
$411 f r o m p b [(l mod M)) + l],pb[(l mod M)) + 11
f r o m pb[l];

p 4 1 to pb[q,Pb[ll to pa[lI;
pa[(l mod N)) + 11 to pb[(l mod M)) + 11,
pb[(l mod M)) + I] to pa[(l mod M)) + 11;

The corresponding change transaction is:

MERGE-TRANSACTION ::

passivate~a[~i,~a~li,~a[2il ~ ~ ~ 3 1 , ~ ~ ~ ~ 1 1 ~ ~ ~ ~ 1 1 ~ ~ ~ 2 1 ,
Pb 131 ;

unlink p a [11 f r o m pa[2], pa[2] f r o m pa[l] ,
pb[11 frornpb[2], pb[2] f rompb[I];

P 5 P 2 P 2

P h - - L P 3
\ I ' P 4 d P 3

(a) (b)

of P6.
Fig. 10. Addition of a philosopher. (a) Before addition. (b) After addition

(a) (b)

Fig. 1 1 . Removal of a philosopher. (a) Before removal. (b) P1 removed.

- - I

Fig. 12. Merging philosopher rings.

To justify that this change maintains an acyclic precedence
graph we need only be concerned with the connection between
philosophers which completes the ring. In Fig. 12, this is per-
formed between pa[l] and pb[l] or between pa[2] and pb[2].
Rules (R12) and (R13), defined for the linking and unlinking
of philosophers, ensure that the philosopher which allocates the
fork on that connection retains the fork if it has the other shared
fork, otherwise it allocates the fork to its neighbor. In the former
case, the allocating philosopher will have two dirty forks, in the
latter no forks. In fact, in the situation where neither the allocating
philosopher nor its newly connected neighbor has another fork, it
does not matter where the new fork is allocated since some other
philosopher must have two forks. This can be easily argued as
follows:

There are n philosophers and n forks; the two philosophers
being connected have 1 fork, consequently the remaining n-2
philosophers have n-1 forks. Therefore, one of these n-2 philoso-
phers must have 2 forks. The original algorithm ensures that a
philosopher cannot hold a clean and a dirty fork simultaneously;
consequently, the precedence graph must be acyclic.

Note that inserting a new philosopher into an existing ring of
philosophers is equivalent to merging a ring of one philosopher.
RING(newphil,l), with an existing ring. Splitting a ring into two
smaller rings requires a change specification opposite to that of
MERGE. As before, the connection which completes each ring
preserves the global invariant.

www.manaraa.com

1302 IEEE TRANSACTIONS

This section has shown how the management protocol is
applied to a specific application. Only those philosophers in the
change passive set are affected by the change allowing the rest
of the system to proceed with its normal execution. Changes
can be carried out in parallel as the stable states ensured by node
quiescence permits consistent decisions to be made during linking
and unlinking. The different cases described in this example
have been prototyped and validated in the Conic environment
for distributed programming [14], [15], [19]. Further work is
required to integrate the change management states into the
current environment.

VI. DEPENDENT TRANSACTIONS
In the discussions above, we have considered only two party

independent transactions. We now relax the restriction of in-
dependence and discuss systems using dependent transactions,
which involve one or more consequent transactions. In general,
systems include both independent and dependent two party
transactions.

A dependent transaction is a two-party transaction whose
completion may depend on the completion of other conse-
quent transactions.

This is described more precisely as follows: f, is a dependent
transaction if there exists a chain of transactions t , , t,, . . . t , in
which each, with the exception of t,, may depend for completion
on the completion of its (consequent) successor transaction. We
do not forbid cycles in this chain, but require that:

1) progress is made to ensure that the transaction is still

2) that deadlock is avoided (for example, that it is not a cycle

We require that the initiator of a dependent transaction is
informed of the completion of consequent transactions. This
enables a node to determine when transactions, which it initiated,
have completed and hence when it has achieved a passive state.

bounded,

of nested transactions).

A. Extension of the Independent Transaction Approach

Consider a number of client nodes Ci which access a printer
server S via their agent Ai and a server manager node M (Fig. 13).
In this case, a transaction may consist of a sequence of message
interactions involving Ci, Ai, M , and S . For instance, C1 may
initiate transaction s l to request a print service; completion
of s l is dependent on the consequent transactions r l and p ,
which A 1 and finally M will initiate to S, to actually print the
lines. Dependent transactions and their potential consequent(s)
are denoted as dependent/consequent(s), as illustrated in Fig. 13
where si is dependent on ri, which is dependent on p .

The change transaction discussed in relation to independent
transactions, such as removal of S, would require that M is
quiescent and all agents Ai, M , and S are in the passive state.
This implies that S could be removed when M and A complete
their current two party transactions ri and p , and S completes the
associated processing. However, since Ci may still have further
lines to send (si is not complete and may require further ri and
p transactions), this is clearly not sufficient to maintain system
consistency.

Hence, if the change passive set of nodes consists only of the
set of nodes which can initiate transactions on a target quiescent
node plus the node itself, there is no guarantee that the node
is in the quiescent state. Nodes may still initiate consequent
transactions on the target node to satisfy completion of arriv-

Fig. 13.

ON SOFTWARE ENGINEERING, VOL. 16, NO. 11, NOVEMBER 1990

r21p

Client-agent-manager interaction using dependent transactions.

ing transactions. There are two main approaches to providing
quiescence in such systems with dependent transactions:

1) Require that consequent transactions are recognized in the
application.

M must recognize that the transactions with S are part of and
a consequence of a wider transaction, and that the passive state
can only be reached when that client transaction completes (i.e.,
M must wait for completion of the client use of the printer before
it can become passive). This approach has the disadvantage of
having to embed, in the application, knowledge of all the transac-
tion dependencies. In addition, this information would be hidden
from the configuration view. Transactions would implicitly ripple
back and require some time to complete, although we would still
require that they do so in bounded time. Another possibility is
to abort transactions with consequents when in the passive state.
For example, M could abort the client transaction with C . This
carries the overhead of complicating C such that it must regain
consistency after transaction abortion (cf. recovery). Aborting
reduces dependent transactions to independent transactions at the
expense of complicating the application code.

2) Expand the passive set to include all nodes initiating depen-
dent transactions which result in transactions on the link or node
targeted for change.

This requires that transaction dependencies are reflected up to
and taken account of at the configuration level. Since it is at the
configuration level that we wish to manage changes, this is the
preferred approach.

B. Generalized Passive State for Systems Using
Dependent Transactions

The proposed approach for systems using dependent transac-
tions is to expand the passive set PS(Q) to include those nodes
which initiate transactions which have consequent transactions on
the node Q required to be quiescent. However, the passive state
may not be reachable for nodes utilizing dependent transactions.
Consider the example in Figure 14. In this system suppose N3
is in the passive state and N1 has initiated transaction a . In this
situation transaction a cannot complete because transaction b can-
not complete because N3 cannot initiate c . Consequently, neither
N1 nor N2 can move into the passive state in bounded time
if requested. Hence, Proposition I does not hold for dependent
systems.

We could consider providing an ordering on the passive set
such that nodes are made passive in the order of the dependence
graph. In the example in Fig. 14 we would passivate in the order
N1 then N2 then N3. However, this order cannot be determined
in general. In the example in Fig. 15, transaction a/b requires N1
before N2, whereas cld requires N2 followed by N1.

A more appropriate approach is to generalize the definition of
the passive state to include the means for dependent transactions
to complete:

A node in the general passive state must accept and service
transactions and initiate consequent transactions, but

www.manaraa.com

KRAMER AND MAGEE: EVOLVING PHILOSOPHERS PROBLEM 1303

C

Fig. 14. A system with cyclic dependencies.

alb

cld

Fig. 15. A system with mutual dependencies.

1) it is not currently engaged in a (nonconsequent) trans-

2) it will not initiate any new (nonconsequent) transactions.
Thus a node in the general passive state must respond to

transactions while it is in the passive state, and, it must initiate
any consequent transactions required for the completion of the
transactions to which it responds. For independent transactions,
the definition of the general passive state reduces to the same
as passive.

For example, in Fig. 16, if node N is in the general passive
state it must not initiate x or y as a result of responding to b
or c. However, it may initiate x to permit completion of a. (For
conciseness, we henceforth use passive to mean general passive
where such use is unambiguous.)

action that it initiated, and

C. Resultant Properties for Systems Using
Dependent Transactions

Proposition 1': Reachability of the Passive state.
Given the generalized definition of the passive state,

Proposition 1 holds for systems using both independent and
dependent transactions.

Justification 1':
As for Proposition 1, with the added justification that depen-

dent transactions will also complete in bounded time even if
the recipient nodes are in the (general) passive state since they
respond to and can initiate consequent transactions.

The definition of quiescence for systems using dependent
transactions remains the same as that for independent transactions
(see Section 111). However, as discussed above, the passive set
must be expanded in order to account for dependent transactions
which lead to consequent transactions on the node.

The enlarged passive set EPS for a node Q, EPS(Q), is
defined as follows:
1) all nodes in PS(Q) are in EPS.
2) all nodes which can initiate dependent transactions which

result in consequent transactions on Q are in EPS.
Proposition 2': Passive requirements for the Quiescent state.
Given the generalized definition of the passive state and the

enlarged passive set, Proposition 2 holds for both independent
and dependent systems (i.e., if node N and all nodes in the
enlarged passive set with respect to N are passive, then N is
quiescent).

Justification 2':
As for Proposition 2, with the added justification that all

nodes which can initiate transactions (independent, dependent,
or consequent) on N are passive, then all transactions involving
N will be complete.

Fig. 16. Independent and dependent transactions on node N .

Proposition 3': Reachability of the Quiescent state.
Given the generalized definition of the passive state and the

enlarged passive set, Proposition 3 holds for both independent
and dependent systems.

Justification 3':
Follows directly from Propositions 1' and 2'.

D. Change Rules

The change rules remain as before, except that the region of
quiescence where the change is to occur results in an enlarged
set of passive nodes specified by the EPS.

E. Composition Rules

In the foregoing, we have been concerned with flat or one-
level graphs of connected nodes. However, in general, we are
concerned with an hierarchic graph structure such that nodes at
one-level may themselves be implemented as graphs of connected
nodes at the next level of detail. For example, in the Conic system
which represents systems as configurations of logical nodes, these
logical nodes are themselves implemented as a graph of subnodes
or tasks. The Conic logical node is the unit of change and
allocation, and the task is the unit of concurrency [19]. To ensure
that the change management system need be concerned with only
one level of the configuration graph at a time we must be able to
derive the transaction dependency relations of a node from those
of its subnodes. In the following, a node which is composed of
subnodes is referred to as a composite node. A substitution rule
can be used to determine the dependencies of composite nodes
from the dependencies of their constituent nodes.

Node Composition by substitution: In composing two nodes,
substitute the consequents for each occurrence of the dependent
transaction which is hidden by the composition (see Fig. 17).

For more complex structures, the rule can be used for each
connection and by repeated application for each node composi-
tion. For example, consider the fork structure in Fig. 18, where
a is potentially dependent on b and/or c.

Internal transactions are not visible in composite nodes. For
example, each philosopher node of the Evolving Philosophers
problem can be (and was) implemented as a composite node
as shown in Fig. 19. This solution structure follows that of [l]
(which addresses only the original Dining Philosophers problem).

The philosopher subnode implements a simple state machine
to control the transitions between thinking, hungry, and eating,
while the servant subnode encapsulates the protocols necessary to
acquire forks. The internal transactions relforks and getforks are
not visible in the composite node Phil. It should also be noted
that the dependency of the philosopher transaction getforks on
the consequent transactions reqright and reqleft (the transactions
to request a left and a right fork) is not visible in the composite
node. However, this dependency means that for the node Phil
to be passive both its subnodes (philosopher and servant) must
be passive.

In our prototype implementation of change management in
Conic, we have adopted the following simplified but pragmatic
strategy. The change management system views the system as
a one-level graph of logical nodes. As mentioned above, logical

www.manaraa.com

1304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 11, NOVEMBER 1990

a/c

v
Fig. 1 f . Derived dependencies for simple node composition.

v
Fig. 18. Derived dependencies for repeated node composition.

0 philosopher 0 philosopher

reqright

reqright reqlen

servant

Fig. 19. Composite philosopher node.

nodes are both the unit of change and the unit of allocation in
Conic. Logical nodes are constrained by design to communicate
by independent transactions so that the management system need
not be aware of dependency information. The structure of a
logical node is fixed at node instantiation time. Transactions
between subnodes can be independent or dependent as shown
in Fig. 19. To simplify local node management we have
implemented the rule that a logical node is passive when all its
constituent nodes are passive. A local entity collates management
state for each logical node.

Composition thus provides a coarser grain for system con-
figuration and dynamic change management. For a finer grain,
decomposition can be used (where appropriate) to expose the
internal structure of connected nodes to make them accessible
to change.

VII. DISCUSSION AND CONCLUSIONS
This paper has presented a comprehensive model of change

management which clearly separates the management respon-
sibilities and view from that of the application (see Fig. 1).
In particular, the objectives given in Section I1 have been ap-
proached as follows.

Changes should be specified in terms of the system structure,
Changes are specified in terms of the primitives create,

remove, link, and unlink which refer only to system structure. In
fact, changes specified in these primitives could be derived from
the difference between specifications of the current and desired
system structures.

Changes specifications should be declarative.
It is the derived change transactions which include the change

control actions (activate and passivate) and specify the paral-
lelism or sequencing of the actual change execution.

Change specifications should be independent of the algorithms,
protocols, and states of the application.

The node configuration states (active, passive) abstract away
the specific application states, and provide a convenient means
for viewing and controlling the application.

Changes should leave the system in a consistent state.
The passive and quiescent states together with the possi-

ble inclusion of connection initialization and finalization code
provide the application with the means to preserve application
consistency in a convenient and pragmatic manner.

Changes should minimize the disruption to the application
system.

The change passive set identifies the set of nodes affected by
a change. In fact, the set is not currently minimal. For instance,
in the client server example in Section IV, the clients need only
be passive with respect to the particular server being removed
and need not actually be prevented from initializing transactions
on other (unillustrated) nodes.

Let us consider the connection level further. The current model
provides for change in the form of creation and deletion of
nodes, and connection changes. Change which only involves
connections could place emphasis on each connection rather
than the entire node which initiates that connection. Thus the
state of each connection (disconnected or connected-passive or
connected-active) could be modeled, together with the consis-
tency preserving actions associated with each connection. This
leads to a finer grain model in which a node can be active with
respect to one connection yet passive with respect to another.
This approach appears to be promising in its ability to describe
connection changes at a finer level of granularity however, it
does require more passive substates. Furthermore, the design of
the connection level actions seems to be more difficult since
the node and its environment may be partially active thereby
making consistency more difficult to attain. Hence, although
our current approach of requiring complete node quiescence
may not be minimal in terms of the disruption to a system,
it does seem to be sufficient and far simpler to reason about
and use.

A. Dependent and Independent Transactions

The approach adopted for dependent transactions generalizes
the passive state of a node to permit initiation of consequent
transactions and enlarges the passive set to include nodes
which can initiate dependent transactions with consequents
on the nodes previously in the set. This expansion of the
passive set corresponds to our intuition that changes to systems
which are more interdependent require more global quiescence
and cause more disturbance (i.e., close-coupling makes change
more difficult). We believe that the model confirms and, to
some extent, quantifies that interdependence. One approach
to alleviating this interdependence, is to compose dependent
nodes together so that composite nodes communicate using
only independent transactions. Changes must then be performed
at a “coarse grain” level on composite nodes rather than on
constituent dependent nodes. Alternatively, dependent systems
can be reduced to independent systems for the purpose
of management, if transactions can be aborted by passive
nodes. The cost of this is the extra complexity incurred
by the application to preserve consistency in the presence
of aborted transactions (cf. atomic transactions). However,
in real systems, this cost may be inevitable to deal with
failure.

www.manaraa.com

KRAMER AND MAGEE: EVOLVING PHILOSOPHERS PROBLEM 1305

B. Detection of the Passive State

The transactions used in the model require that the initiator
is aware of the completion of the transaction, whether it is
dependent gr independent (see the definition in Section 11). This
is required i n order that a node can determine when outstanding
transactions that it initiated are complete and hence when it is
passive. If this were not the case, it is possible that a node
could assume completion of a transaction which was actually
delayed in communication and still outstanding. This requirement
could be relaxed to permit, for instance, asynchronous messages
if the node or management system used some other method
for detecting termination of transactions. This would require
use of a distributed termination algorithm such as the diffusing
detection algorithm of Francez [8]. Assuming that messages do
not overtake one another, the management system could initiate
detection by sending queries along the dependency chains of the
nodes in the passive set and cbtaining confirmation if all nodes
agree that they are indeed passive.

C. Related Work

The changes described in this model are directed at the
operational system itself, in terms of changes to the software
components and their interconnections. It can be contrasted with
the model for change incorporated in the Inscape Environment
[21] which concentrates on change validation in relation to
a static definition of the system. Inscape utilizes a semantic
interconnection model which could form a useful adjunct to our
model by permitting static change validation before application to
the system itself. A promising and related approach which could
be used to model and analyze dynamic configuration changes
has been suggested using graph grammars (Garp [l l] and A-
Grammars [121). This provides a formal graphical description
of system structure which is equivalent to our configuration
specification. Changes are specified in terms of A transitions
which act on the system structure to produce new structures.
However, unlike our approach, they have chosen to model aspects
such as message passing at the structural level, thereby making
the specification of changes rather more complex than ours at
the configuration level. Also, their model appears to be purely
for specification purposes, and gives no indication as to how
it might be realized. For instance, it is not clear how detailed
consistency constraints, such as those preserved by the actions in
the evolving philosophers, could be modelled in A-grammars.

Pragmatic approaches to dynamic change management have
tended to concentrate on code replacement. The most simple
strategies are little more than traditional object code patching
which relies on recovery to ensure system consistency. More
recently Frieder and Segal [9] have suggested a scheme for
procedure replacement which does not require recovery. While
we ensure that component quiescence will occur, they rely on
detecting procedure quiescence before performing a change.
Continuously active procedures can thus not be replaced in
their scheme. Further, while we are concerned with arbitrary
restructuring of a system their scheme is firmly focused on
replacement.

The transformational approach [2] advocates that changes
should be dealt with at the formal specification level. The new
system is then “regenerated” from that changed specification
using transformational techniques. However, in order to avoid
regenerating the entire system, the changed parts need to be iden-
tified and generated. Also, dynamic introduction of the changes to
an operational system would still need to be supported in some

way. Given that even the transformational approach needs to
describe nontrivial systems as some composition of components,
our model provides a means for obtaining the required structural
changes from the new structural specification (Fig. 2) and of
deriving the change transactions for integration of the changes
dynamically. Hence, although at first sight the two approaches
appear to be incompatible, our model provides a systematic and
pragmatic basis which could be used in conjunction with the
transformational approach.

D. Further Work

The paper has concentrated on evolutionary change where
change is instigated by an agent external to the system. However,
the change protocol can equally be invoked internally by the
application. The application can minimize the disruption caused
by a change by instigating the change when quiescence is
detected rather than externally imposed.

Change could also occur as a result of failure. Although
not explicitly handled by the model, we believe that failures
can be handled if the nodes incorporate the necessary recovery
actions. These would be used to restore the remaining system to
consistency in conjunction with the reconfiguration actions which
could be triggered by detection of failure. This area requires
further investigation.

The management of evolutionary change is a difficult but
important issue. It is therefore essential that the techniques
adopted are both practical and soundly based. We believe that
our approach, with its clear separation of structural management
and application concerns, is very promising in these regards.
Some small case studies have been prototyped and tested in the
Conic environment for distributed programming which provides
both textual and graphical facilities for performing dynamic
configuration changes [16]. It now remains to be further refined,
formalized, and tested on larger case studies.

ACKNOWLEDGMENT
The authors would like to acknowledge discussions with our

colleagues M. Sloman, N. Dulay, K. Twidle, and K. Ng during
the formulation of these ideas. In particular we acknowledge the
contribution of A. Young in prototyping and refining the change
management model.

REFERENCES

G. R. Andrews et al., “An Overview of the SR language and its
implementation,” ACM TOPLAS, vol. 10, no. 1, pp. 51-86, Jan.
1988 _ _
R. Baker, “A 15 year perspective on automatic programming,”
IEEE Trans. Software Eng., vol. SE-11, no. 11, Nov. 1985.
M. R. Barbacci, C. B. Weinstock, and J . M. Wing, “Programming at
the processor-memory-switch level,” in Proc. IEEE 10th Int. Conf
Software Eng., Singapore, Apr. 1988, pp. 19-29.
T. Bloom, “Dynamic module replacement in a distributed system ,”
MIT Lab. Comput. Sci., Tech. Rep. MIT/LCS/TR-303, Mar. 1983.
K. M. Chandy and J. Misra, “The drinking philosophers problem,”
ACM TOPLAS, vol. 6, no. 4, pp. 632-646, Oct. 1984.
F. De Remer and H. Kron, “Programming-in-the-large versus
programming-in-the-small,” in Proc. Conf Reliable Sofhvare, 1975,

E. W. Dijkstra, “Hierarchical ordering of sequential processes,” in
Operating Systems Techniques, C. A. R. Hoare and R. H. Perrot,
Eds. New York: Academic, 1972.
N. Francez, “Distributed termination,” ACM TOPLAS, vol. 2,
no. 1, pp. 42-55, Jan. 1980.
0. Frieder and M.E. Segal, “Dynamic program updating in a
distributed computer system,” in Proc. IEEE Conf Sofhvnre Main-
tenance, Phoenix, AZ, Oct. 1988, pp. 198-203.

pp. 114-121.

www.manaraa.com

1306 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 16, NO. 11, NOVEMBER 1990

[101 S. A. Friedberg, “Transparent reconfiguration requires a third-party
connect,” Dep. Comput. Sci., Univ. Rochester, Rochester, NY,
Tech. Rep. TR220, Nov. 1987.

[ll] S.M. Kaplan and G.E. Kaiser, “Carp: Graph abstractions for
concurrent programming,” in Proc. ESOP ’88, Nancy, France,
March 1988.

[12] S. M: Kaplan, S. K. Goering, and R. H. Campbell, “Specifying
concurrent systems with A-grammars,” in Proc. 5th Int. Workshop
Software Specification and Design, Pittsburgh, PA, May 1989,

[13] J. Kramer and R. J. Cunningham, “Towards a notation for the
functional design of distributed processing systems,” in Proc. IEEE
1978 Int. Con$ Parallel Processing, Aug. 1978, pp. 69-76.

[14] J. Kramer and J. Magee, “Dynamic configuration for dis-
tributed systems,” IEEE Trans. Software Eng., vol. SE-11, no. 4,
pp. 424-436, Apr. 1985.

[15] J. Kramer, J. Magee, and M. Sloman, “The CONIC toolkit for
building distributed systems,” IEE Proc., vol. 134, part D, no. 2,
pp. 73-82, Mar. 1987.

[16] J. Kramer, J. Magee, and K. Ng, “Graphical configuration program-
ming,” Computer, vol. 22, no. 10, pp. 53-65, Oct. 1989.

[17] T. J. Leblanc and S. A. Friedberg, “HPC: A model of structure and
change in distributed systems,” IEEE Trans. Comput., vol. C-34,
no. 12, pp. 1114-1129, Dec. 1985.

[181 M. M. Lehman, “Program evolution,” in Proc. Symp. Empirical
Foundations of Information and Software Science, Atlanta, GA,
Nov. 1982.

[19] J. Magee, J. Kramer, and M. Sloman, “Constructing distributed sys-
tems in conic,” ZEEE Trans. Software Eng., vol. 15, pp. 663-675,
June 1989.

[20] J. Misra, “Reasoning about networks of communicating processes,”
INRIA Advanced NATO Studies Inst. Logics and Models for
Verification and Specification of Concurrent Systems, Nice, France,
1984.

[21] D. E. Perry, “Software interconnection models,” in Proc. 9th Int.
Con$ Software Engineering, Apr. 1987, pp. 142-149.

New York Springer-Verlag, pp. 191-205.

pp. 20-27.

Jeff Kramer received the B.Sc. (Eng) degree
in electrical engineering from the University of
Natal, South Africa, in 1970, and the M.Sc.
and Ph.D. degrees in computing science from
Imperial College, London, England, in 1972 and
1979, respectively.

He is currently a Senior Lecturer in the De-
partment of Computing at Imperial College. His
research interests include requirements analysis
techniques, design methods, software construc-
tion languages, and tool support environments,

especially as applied to distributed software. He was principle investiga-
tor of the TARA project on Tool Assisted Requirements Analysis, and
of the various research projects which led to the development of the
Conic Environment for Distributed Programming. He is coauthor of a
book, Distributed Systems and Computer Networks. He is currently the
Technical Director of a major ESPRIT project, REX, on reconfigurable
and extensible parallel and distributed systems.

Dr. Kramer is a member of the IEE, the Association for Computing
Machinery, and the IEEE Computer Society.

Jeff Magee graduated from Queens Univer-
sity, Belfast, Northern Ireland, with a degree
in electrical engineering in 1973. After working
with the British Post Office on the design and
development of System X he returned to college
where he received the M.Sc. and Ph.D. degrees
in computing science from Imperial College,
London, England, in 1978 and 1984, respec-
tively.

He is currently a Senior Lecturer in the De-
partment of Computing at Imperial College. His

research interests include parallel algorithm design, distributed operating
systems and languages, and tool support for distributed systems. He was
a principle investigator of the various research projects funded by British
Coal and SERC which led to the development of the Conic Environment.

Dr. Magee is a member of the IEE.

