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The Evolving Philosophers Problem: 
Dynamic Change Management 

Jeff Kramer and Jeff Magee 

Abstract-One of the major challenges in the provision of distributed 
systems is the accommodation of evolutionary change. This may involve 
modifications or extensions to the system which were not envisaged 
at design time. Furthermore, in many application domains there is 
a requirement that the system accommodate such change dynamically, 
without stopping or disturbing the operation of those parts of the system 
unaffected by the change. Since the description of software structure 
(components and interconnections) provides a clear means for both sys- 
tem comprehension and construction, it seems appropriate that changes 
should also be specified as structural change, in terms of component 
creation /deletion and connection/disconnection. These changes are then 
applied to the operational system itself to produce the modified system. 

This paper presents a model for dynamic change management which 
separates structural concerns from component application concerns. This 
separation of concerns permits the formulation of general structural 
rules for change at the configuration level without the need to consider 
application state, and the specification of application component actions 
without prior knowledge of the actual structural changes which may be 
introduced. In addition, the changes can be applied in such a way as to 
leave the modified system in a consistent state, and cause no disturbance 
to the unaffected part of the operational system. The model is applied to 
an example problem, “evolving philosophers.” The principles described in 
this model have been implemented and tested in the Conic environment 
for distributed systems. 

Index Terms-Change management, distributed systems, dynamic con- 
figuration, system evolution. 

I. INTRODUCTION 
ISTRIBUTED computing systems are in widespread use in D commercial, industrial, and research establishments. One of 

the major difficulties in the development and maintenance of 
such systems is that of systems management, particularly with 
respect to the management of change. Distributed systems need 
to evolve as human needs change, technology changes, and the 
application environment changes. It has been argued [ 18) that 
the introduction of the computing system is itself a stimulus for 
change. These changes may require modification of a function 
already provided by the system, or extension by the introduction 
of new functions. In general, these changes, termed evolutionary, 
are difficult to accommodate as they cannot be predicted at 
the time the system is designed. Consequently, we would like 
systems to be sufficiently flexible to permit arbitrary, incremental 
change. In addition, we believe that systems should be capable 
of supporting such change dynamically, without interrupting the 
processing of those parts of the system which are not directly 
affected. Hence, it should be possible to direct changes at the 
operational system itself. 
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Distributed systems potentially offer a flexible environment for 
dynamic modification and extension [4], [ 151. The underlying 
support mechanisms for change (software component creation, 
binding, and deletion) are readily available. However, there has 
been little suggestion as to how such dynamic change should 
be specified, managed, and controlled. This paper describes an 
approach based on a separation of concerns: functional concerns 
of the application processing components which can be pro- 
vided with a general capability for change independent of what 
structural changes are introduced, and structural configuration 
concerns for specifying structural change without the need to 
consider application state, 

Recent work on distributed software specification and con- 
struction confirms the benefits of separating the software compo- 
nent programming concerns from those of system configuration 
[3], [15], [17]. A separate configuration specification is useful 
both as a description of the system structure and to generate 
the actual system. As for software construction, we believe that 
change is well handled at the configuration level in terms of 
software components and their interconnections [lo], [14]. Fig. 1 
identifies the central role of configuration management which is 
required to interface between the functional view of application 
programming and the structural view of system configuration. 
Changes are specified declaratively in terms of system structure 
only. The system itself is modified by the application of proce- 
dural change transactions, which include ordered sets of structural 
and control actions. These change transactions are derived by 
management from the change specifications. Hence, the system 
evolves incrementally by the application of change specifications 
as shown in Fig. 2. Alternatively, a change specification could 
be derived by comparing the desired configuration specification 
with that of the current system. 

In addition to the means for specifying and performing change, 
it is also necessary to provide facilities for controlling change 
such that application consistency is preserved both while the 
change is applied and subsequent to the change. This is the role 
of change management. 

What exactly are the required characteristics of a configuration 
management system for managing dynamic change? Section I1 
identifies the objectives of change management, and defines more 
precisely the distributed system environment in which it is ex- 
pected to operate. The form of interaction between management 
and the application nodes (software components) is presented in 
Section 111, defining the management view of node states and the 
desirable properties which this provides. This leads to the devel- 
opment of a management protocol in Section IV which describes 
how change management is applied, illustrating the process with 
some simple examples. It also briefly discusses the required 
application contribution to the change process. This is followed 
in Section V by a detailed example, the Evolving Philosophers. 
Section VI extends the work to cover systems with more interde- 
pendence, and illustrates the principles for the evolving philoso- 
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Fig. 1 .  System configuration and change management. 

configuration 
changes 

configuration 
specification 

Configuration 
Management 

configuration 
specification 

configuration 
specification 

Configuration 
Management 

configuration 
specification 

Fig. 2. Evolution of a system by incremental changes. 

phers problem. The concluding section of the paper discusses 
other approaches to dynamic change management which range 
from pragmatic support for procedure replacement to the more 
formal transformational approach. The conclusions also examine 
the adequacy of our approach and discuss its implications. 

11. DYNAMIC CHANGE MANAGEMENT 
This section identifies the objectives of change management, 

and defines more precisely the distributed system environment 
in which it is expected to operate. These objectives represent an 
approach which clearly separates application specific functions 
from structural configuration functions. As mentioned, the 
intention is to provide an application independent configuration 
management facility. 

A.  Objectives 
Changes should be specified in terms of the system structure. 
Systems, and in particular distributed systems, are constructed 

in a modular way consisting of a configuration of software nodes. 
We propose that system evolution at the level of programming 
in the small [6] is at too low a level, being both too detailed 
and impractical due to the tight coupling of program elements. 
Instead, change should be supported at a component node level 
(or levels) where the possibility exists for understanding the 
effects of change and where the internode coupling is such that 
change is both possible and pragmatic. 

Change specifications should be declarative. 
By this we mean that it should be the responsibility of the 

configuration management system, not the user, to determine 
the specific ordering of actual change operations applied to the 
system. This clearly separates the change required (which is 
application specific) from how it is to be executed. Config- 
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uration management can exploit parallelism for implementing 
changes. Declarative specifications leave such decisions to the 
implementation mechanisms. 

Change specifications should be independent of the algorithms, 
protocols, and states of the application. 

In order to provide generic configuration management, the 
configuration management system which carries out the changes 
should be independent of the application. Since changes are to 
be specified in terms of the configuration structure, the paper 
will demonstrate that dependence on aspects such as application 
state can be abstracted to a general requirement for application 
quiescence, and dependence on application algorithm to a need 
for component connection initialization/finalization actions. 

Changes should leave the system in a consistent state. 
Informally, a consistent application state is one from which the 

system can continue processing normally rather than progressing 
towards an error state. It is usually expressed in terms of some 
global system invariant. A system is viewed as moving from 
one consistent state to the next. In fact, application transactions 
modify the state of the application, and, while in progress, have 
transient state distributed in the system. While transactions are 
in progress the internal states of nodes may be mutually incon- 
sistent. In order to avoid the loss of application transactions and 
achieve a consistent state after change, a consistent application 
state is required in the affected part of the system before the 
change. 

Changes should minimize the disruption to the application 
system. 

It should not be necessary to stop the whole of a running 
application system to modify part of it. The management system 
should, from the change specification, be able to determine a 
minimal set of nodes which are affected by the change. The rest 
of the system should be able to continue its execution normally. 

These objectives have a number of consequences for both 
the application and the configuration management system. In 
particular, the management system must give the affected part 
of a system the opportunity to reach a consistent state before 
a change is performed. The management system does not force 
changes but waits for the application to reach a consistent state. 
This consistent state requires that there is no communication in 
progress between the affected nodes nor with their environment. 
Each node is said to be in a quiescent state. Further, the nodes 
must remain quiescent while the change is executed. This gives 
newly created nodes the opportunity to be initialized in a state 
which is consistent with the rest of the system and nodes which 
are being removed the opportunity to leave the system in a 
consistent state. Later sections will describe how the affected 
nodes are identified and controlled by management, and discuss 
the application level responsibilities. 

B. Distributed System Model 

In order to provide a sound basis for a discussion on change 
management, we first describe the environment and the assump- 
tions made. We also briefly define the terms used. 

System: A system is assumed to consist of a set of processing 
nodes with directed connections indicating the communica- 
tion paths between the nodes. 
Node: A node is a processing entity which can initiate and 
service transactions. 
Connection: A connection is a directed communication path 
from the initiator of the communication exchange to the 
recipient (Fig. 3). 
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connection 

Fig. 3. A connection. 

A system may thus be represented as a directed graph 
(Fig. 1 ) .  The edges in the figure indicate that node N1 may 
initiate and receive transactions with both of N2 and N4.  
N 2  may only initiate transactions with N1, but may receive 
transactions from nodes N1 and N3.  
Transaction: A transaction is an exchange of information 
between two and only two nodes, initiated by one of the 
nodes. Transactions are the means by which the state of a 
node is affected by other connected nodes in the system. 
Transactions consist of a sequence of one or more message 
exchanges between the two connected nodes. It is assumed 
that transactions complete in bounded time and that the 
initiator of a transaction is aware of its completion. 

Fig. 4 illustrates valid examples of transactions. In prac- 
tice they may consist of a remote procedure call (rpc) or 
request-reply message exchange as in (a), or some sequence 
or combination of rpc’s or message passing as shown in 
(b). The only requirement is that one of the two parties 
is identifiable as the initiator of the transaction and is 
informed of the completion of the transaction. Completion 
of transactions at the initiator is required to ensure correct 
termination of the management protocol described later. We 
assume only independent transactions, where completion of 
a transaction does not depend on any other (possibly nested) 
transactions with other nodes. Section VI discusses the 
implication of relaxing this restriction to permit dependent 
transactions, where completion is dependent on consequent 
transactions with other nodes. 
Change: A change is described in terms of modifications 
to the structure (configuration) of the application system. 
Changes take the form of node creation and deletion, and 
connection establishment and removal. Changes are effected 
by a Configuration Manager. Previous work [14] ,  [19]  has 
identified a set of management primitives for both specifying 
and modifying the structure of systems. In abstract form 
these are: 

create N:T [at L ]  
Create node N of type T, optionally specify at 
physical location L. 
The name N must be unique within the system. 
(For simplicity, T is omitted in later examples where 
the type is obvious.) 

Remove node N 

Create a connection from node N1 to node N2.  
(For simplicity, we omit the detail of multiple con- 
nections between nodes since this does not alter the 
algorithms presented in the following.) 

Remove a connection between node N1 and node N2.  
Consistency: This is determined by the re!ationship between 
node application states and is usually described by some 
global invariant (constraint) which must be preserved. For 
local consistency of a node, it is necessary that there are no 
partially complete transactions at the node. 

remove N 

link N1 to N 2  

unlink N1 from N2 

Initiator Recipient 
(a) --b 

complete 

(b) b - 
.... E 

complete 

Fig. 4. Examples of (two-party) transactions. 

The next section describes the interface between management 
and the application nodes and refines the notion of quiescence. 

111. APPLICATION-MANAGEMENT INTERACTION 
When performing configuration changes it is important that 

application information is not lost and that the application is left 
in a consistent state. To do this, the management system should 
have an interface with the application which allows it to direct 
the application towards an appropriate state for reconfiguration. 
Further, the management system must be able to confirm that 
the application has reached this state. The interface between 
application and management system must be a generic one which 
makes management independent of the particular application. To 
meet this objective, application state is abstracted into a set of 
configuration management states for each node. This set of states 
provides sufficient information about application state to allow 
the management system to perform changes which leave the 
application in a consistent state. These configuration states and 
the transitions between them are outlined below. 

A.  Node Configuration States and Transitions 

The state transition diagram of Fig. 5 specifies the possible 
states for an application node from the configuration viewpoint 
(cf. process states from an operating system viewpoint). The 
interaction between configuration management and the node 
are indicated as transitions. These transitions are instigated by 
configuration management (cf. “control actions” [8]) and should 
be distinguished from the normal application level transactions 
(“basic communications”). 

B. Transitions 

Each transition depicted in Fig. 5 represents the management 
action which initiates the transition. Node application actions are 
required to reach the destination management state (Fig. 6). 

The temporary state involved in each transition gives a node 
the opportunity to perform the initialization and finalization 
actions necessary to preserve application consistency when it is 
createdlremoved and when connections are linkedlunlinked. 
The application indicates that these actions are complete by 
asserting the destination state of the transition to the change 
management system. Activate and passivate (Fig. 5) are the 
transitions between the active and passive states described below. 

C.  States 

A node in the active state can initiate, accept, and service 
transactions. 
A node in the passive state must continue to accept and 
service transactions, but 
1) it is not currently engaged in a transaction that it 

initiated, and 
2) it will not initiate new transactions. 
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Fig. 5. Node state transitions. 
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Fig. 6. Node transitions. 

The particular state identified as necessary for reconfiguration 
is the passive state. A node in the passive state must continue to 
accept and service transactions while it is in the passive state, but 
it must not initiate any new transactions as a result of accepting 
or servicing transactions. This passive state is so defined as to 
permit connected nodes to progress towards a passive state by 
completing outstanding transactions. In addition it contributes 
to system consistency by completing transactions. However, the 
passive state is not sufficient for reconfiguration as it may still 
be processing transactions initiated by other nodes. 

D. Node Quiescence 

For consistency during change we require, a stronger property, 
viz. that the node is not within a transaction and will neither 
receive nor initiate any new transactions. This property is called 
quiescence of a node and is that state in which the node is both 
passive and has no outstanding transactions which it must accept 
and service. Such a state depends not only on the node itself, but 
on the connected nodes. 

Consequently, a node is quiescent i f  
1) it is not currently engaged in a transaction 

’ that it initiated, }passive 
2) it will not initiate new transactions, }properties 
3) it is not currently engaged in servicing a transaction, and 
4) no transactions have been or will be initiated by other nodes 

In the quiescent configuration state, the application state of 
a node is both consistent and frozen. It is consistent in that 
the application state does not contain the results of partially 
completed transactions, and is frozen in that the application state 
will not change as a result of new transactions. Quiescence is 
significant for dynamic configuration changes since, in cases 
such as unlinking, it permits a node to make decisions based 
on a stable and consistent state regarding the particular actions 
it should take before it is unlinked. For instance, the node may 
pass a consistent uptodate version of its application state to its 
environment before it is unlinked. 

Our notion of quiescence is loosely based on earlier work 
[ 131 which specified node behavior using a “quiescent invariant”: 
the stable, steady properties of a node characterized by a local 
invariant preserved by the node. Quiescence is also related to that 
defined by Misra [20], except that the discussion there focuses 
on traces and termination, whereas we focus on node state and 
consistency. Misra defines a node as quiescent if it may not 

which require service from this node. 

produce further output. Our notion is stronger in the sense that 
the trace produced by a quiescent node will not be extended by 
any further output. 

E. Resultant Properties for Systems Using 
Independent Transactions 

Given that the passive and quiescent states are desirable node 
management states, we now show how they can be achieved 
for systems constructed from independent transactions. From 
Section 11, an independent transaction is a two party transaction 
whose completion does not depend on any other transaction. In 
these systems, a transaction serviced by a node may cause that 
node to initiate transactions to other nodes, however, completion 
of the service may not depend on completion of any transaction 
which the node may initiate. Section VI discusses the extensions 
required for dependent transactions. 

The following propositions and justifications demonstrate the 
reachability of the passive state, the relationship between passive 
and quiescent states and the reachability of the quiescent state. 

Proposition 1: Reachability of the Passive state. 
In independent systems, a node can move from the active to the 

passive state in bounded time, irrespective of the configuration 
state (active or passive) of the nodes to which it is connected. 

Justification I :  
To be passive, the node must satisfy two conditions: 
i) i t  is not currently engaged in a transaction that it initiated: 

A node will complete in bounded time any transaction 
which it initiated since transactions complete in bounded 
time and completion is independent of the completion 
of transactions at other nodes. Transactions complete in 
bounded time even if the recipient node is in the passive 
state since passive nodes accept and service transactions. 

ii) it will not initiate new transactions. 
This property can be immediately satisfied by the ap- 

plication. 
For systems using independent transactions, we define the 

passive set PS of a node Q, denoted PS(Q), to consist o f  
1) the node Q 
2) all nodes which can directly initiate transactions on Q, i.e., 

Proposition 2: Passive requirements for the Quiescent state. 
In systems using independent transactions, Q is quiescent if 

Justification 2: 
A node is quiescent if 
i) it is not currently engaged in a transaction that it initiated, 

ii) it will not initiate new transactions, 
iii) it is not currently engaged in servicing a transaction, and 
iv) no transactions have been or will be initiated by other 

nodes which require service from this node. 
Conditions i) and ii) follow from the passive state of Q, i.e., 

Q is in PS(Q). 
Conditions iii) and iv) follow from the passive states of the 

nodes in PS(Q), i.e., if all nodes which can initiate transactions on 
Q are also passive, then all transactions involving Q are complete 
and no new ones will be initiated. 

Hence Q is in a quiescent state. 
Proposition 3: Reachability of the Quiescent state. 
In systems using independent transactions, a node Q can move 

from the active to the quiescent state in bounded time if all the 
nodes in PS(Q) are directed to move into the passive state. 

all nodes with connection arcs directed towards Q. 

all nodes in PS(Q) are in the passive state. 

Justification 3: 
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Since all nodes will achieve the passive state in bounded 
time (Proposition l), and the passive state of all nodes in PS(Q) 
imply quiescence of Q (Proposition 2), then Q will achieve the 
quiescent state in bounded time. 

This section has defined an interface through which a config- 
uration manager communicates with and controls an application 
node. Communication between configuration maqagement and 
the node is synchronous in the sense that a management action is 
always confirmed by the node. (For pragmatic reasons, it may be 
necessary to support the forced removal of “rogue” nodes which 
do not obey or react correctly to configuration commands. These 
can be added as remove transitions from the active state.) Note 
that the node configuration state is the only way that configuration 
management can affect the application state. The passive state 
has been carefully defined to be readily achievable by a node 
by completion of any transactions which it initiated. Since 
transactions complete in bounded time, the passive state can 
be achieved in bounded time. Similarly, since the passive state 
permits servicing of transactions initiated by connected nodes, 
they too will be permitted to progress to a passive state. However, 
for the configuration manager to achieve quiescence of some 
target node, it is necessary to make the target node passive and 
also to create a region of passive nodes (the passive set) around it. 
This will achieve a stable situation where there are no incomplete 
or active transactions. This together with the abstraction of 
application state into configuration management states forms the 
basis of the change protocol outlined in the next section. 

IV. CHANGE MANAGEMENT PROTOCOL 

A.  Management View 

In this section we outline a change protocol for systems 
constructed from independent transactions. This protocol meets 
the change management objectives of Section 11. In particular, 
the objective of a declarative, as opposed to imperative, change 
specification means that changes are specified using only struc- 
tural actions create, remove, link, and unlink (see Section 11). 
The activate and passivate actions on nodes are essentially an 
implementation device which should not be visible to a user. 
The following outlines a change protocol in which the change 
transactions, including activate and passivate actions and the 
ordering of execution, can be automatically derived from the 
change specification (see Fig. 1). 

1)  Change Rules: The change protocol involves establishing 
a region of quiescence, specified as the set of nodes required 
to be passive, where the change is to occur. As mentioned 
in Section 11, changes involve node creation and deletion, and 
connection establishment and removal. We now examine each of 
the possible changes in turn and present the rules for contributing 
nodes to the passive set. 

i)  Node deletion -remove. 
Rule: The precondition for removing a node N is that it is 

quiescent and isolated. By isolated, we mean that it has no 
connections directed to it from other nodes or from it to other 
nodes. 

Justification: An isolated node cannot affect the system and 
so can be independently removed. 

ii) Connection-link and unlink. 
Rule: The precondition for either linking or unlinking is 

that the node N from which the connection is directed must 

this can be achieved by requiring that all nodes in PS(N) are in 
the passive state.) 

Justification: Quiescence of the initiator node ensures that its 
state is consistent and frozen with respect to that connection, 
thereby enabling connection initialization/finalization to occur in 
a stable environment. 

iii) Node Creat ion4reate .  
Rule: The precondition is trivially true. 
Justification: When a node is created it is initially isolated and 

consequently must be in the quiescent state since it can neither 
respond to nor initiate transactions on other nodes. 

2) Change Transactions: A change transaction consists of a 
set of partially ordered configuration actions (or commands), 
which is derived from the structural change so as to satisfy the 
preconditions outlined above. One possible algorithm for deriving 
change transactions is outlined below. 

Step 1: Determine the set of connections CS which must be 
unlinked to isolate nodes to be removed [to satisfy i)]. From this, 
together with the set of connections LS directly specified in link 
or unlink directives, determine the set of nodes QS (quiescent 
set) which must be made quiescent to satisfy i) and ii) above, 
i.e., 

CS = {connections c I c is a connection to/from a node to be 

LS = {connections 1 I 1 is a connection in a link/unlink 

QS = {nodes n 1 n is the initiator node on a connection in 

Step 2: Form the change passive set CPS as the union of 

removed} 

directive} 

(CS U LS) or n is to be removed}. 

passive sets PS of each node in QS, i.e., 

CPS = U P S ( i )  forall i in QS. 

Step 3: Perform the configuration actions in the following order: 
passivate 
unlink 
remove 
create 
link 
activate 
It should be noted that if the change management system 

permits multiple change transactions to be performed in parallel 
then the set of nodes which must be locked for a change is a 
superset of the change passive set. In detail, the lock set is 

<all nodes in the change passive set CPS> 

(could be performed at any time before link) 

<CPS - removed nodes + created nodes> 

LockSct = CPS U {nodes n I n is a recipient node on a 

connection in (CS U LS)}. 

The lock set includes nodes to which connections are directed 
so that a change transaction does not attempt to make a con- 
nection to a node which has been deleted by another concurrent 
transaction. 

3) A Simple Example: In order to illustrate the management 
view of the change protocol, we briefly describe some possible 
changes for a simple client-server system. The system graph for 
the client-server system is shown in Fig. 7. 

i) Adding a client: 
ii) Unlinking or 

Removing a client C1: 
iii) Removing the server S:  

Change Passive Set = { } 

Change Passive Set = {Cl} 
Change Passive Set = {Cl, C2, 

be in the quiescent state. (From Proposition 2, we know that c3, S } .  
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i+ c3 

Fig. 7. A simple client-server system. 

S is passive when all client transactions have completed. In 
order to replace the server S with a modified server S’, the 
following change specification is provided: 

remove S <and unlink dangling connections> 

create S’ 
link C1 to S’, C2 to S’, C3 to S’ 

and the derived change transaction is as follows: 

passivate C1, C2, C3, S & create S‘ 
unlink C1 from S, C2 from S ,  C3 from S 

<unlink dangling connections> 

remove S 
link C1 to S’,C2 to S’,C3 to S’ 

activate C1, C2, C3,S’ 

B. Application Contribution 

The description so far has concentrated on the management 
view of change. System consistency is an application dependent 
notion and in general requires nodes to contribute to its preserva- 
tion. One of the main contributions that an application node must 
make is preservation of the passive state, i.e., the application 
must not initiate any new transactions, but must be prepared to 
service transactions from other nodes. The change from active io 
passive state is implemented in a node by converting the general 
description of the passive state into an invariant constraint in 
application terms (i.e., referring to local node variables) that 
must be preserved by the node. When in the passive state, the 
node confirms this by responding assert(passive) (Fig. 6) to 
management. 

Furthermore, in order for a newly connected application node 
to preserve consistency, it must be given the opportunity to 
initialize itself so as to be consistent with its new environment. 
Similarly a node which is about to be disconnected must be given 
the opportunity to clean up in order to leave its environment 
in some consistent state. These opportunities are provided for 
in the management protocol by the link and unlink transitions 
(Fig. 5) where the node can, if necessary, execute such actions as 
necessary. These actions may include communication with other 
nodes. Again, completion of these actions is confirmed by an 
assert(passive) response to management. 

Obviously the actual actions which need to be executed 
at these times are application dependent. However, these are 
simplified by the fact that, by the change rules described above, 
there is no transient information in the node. In general, these 
actions may include the initiation of queries on connected 
nodes. The complexity depends on the complexity of the 
application and the autonomy of the node. This confirms 
our intuition that, if a system is designed such that its 
constituent nodes are tightly coupled and interdependent, then 

the connection initialization/finalization actions are likely to be 
correspondingly complex. 

The application contribution is illustrated in the detailed ex- 
ample in the next section. 

V. EVOLVING PHILOSOPHERS 

To illustrate the management scheme developed in the 
preceding sections, it is applied to the Dining Philosopher’s 
(Diners) problem [7] .  Philosophers are arranged in a ring with 
neighboring philosophers sharing a fork. A philosopher is either 
thinking, hungry, or eating. To move from the hungry to the 
eating state a philosopher must acquire both his left-hand and 
right-hand fork. The solution presented below is a modification to 
the fully distributed diners solution due to Chandy and Misra [5] 
to permit dynamic change. First, we outline Chandy and Misra’s 
solution for a static number of philosophers and then describe the 
modifications necessary to permit arbitrary changes to a dining 
philosopher system such as the addition/deletion (birth/death) 
of philosophers and the merging/splitting of communities of 
philosophers. Coping with these dynamic changes is the evolving 
philosophers problem. Based on the change model, a solution is 
described below. This solution has been implemented and tested 
in the Conic environment for distributed programming [ 141, [15], 
~ 9 1 .  

A. Chandy and Misra’s Hygienic Solution to the Diners Problem 

Each philosopher P, is implemented as a process which 
communicates with its left- and right-hand neighbors by asyn- 
chronous message passing. The system structure is depicted in 
Fig. 8. 

Chandy and Misra describe their solution informally as fol- 
lows: “A fork is either clean or dirty. A fork being used to eat 
with is dirty and remains dirty until it is cleaned. A clean fork 
remains clean until it is used for eating. A philosopher cleans a 
fork when mailing it (he is hygienic). An eating philosopher does 
not satisfy requests for forks until he has finished eating.” When 
not eating, philosophers defer requests for forks that are clean 
and satisfy requests for forks that are dirty. This solution can be 
considered to implement a precedence graph such that an edge 
directed from a node U to v indicates that U has precedence over 
v (Fig. 9). 

In the diners solution a philosopher node U has precedence 
over its neighbor v if and only if 1) U holds the fork and it is 
clean, or 2) v holds the fork and it is dirty, or 3) the fork is in 
transit from v to U .  Chandy and Misra showed that if initially 
all forks are dirty and located at philosophers such that the 
precedence graph is acyclic i t  will remain acyclic since 1) the 
direction of an edge (from U to v) can only change when U starts 
eating and 2) both edges on a philosopher are simultaneously 
directed towards him when he starts eating. Chandy and Misra 
prove that since immediately on finishing eating a philosopher 
yields precedence to his neighbors, all hungry philosophers will 
commence eating in finite time, i.e., no philosopher remains 
hungry forever. 

More precisely the algorithm is described as follows: 
Messages: 
forktokenl 

reqtoken, 
Boolean Variables: 
f o w l )  Philosopher holds fork f .  
Wf(f 1 

Passes fork f to neighbor which shares f ( f  can 
take the value left or right). 
Passes request token for fork f to neighbor. 

Philosopher holds the request token 
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(R6) Philosopher eating to thinking transition: 

cating,eating time expired => thinking := true; 

eating := false 

(R7) Philosopher thinking to hungry transition: 

thinking,thinking time expired => hiirigry := triic; 

thinking := false 
Fig. 8. Schematic and structure of the diners system. 

P4----t8-P3 P4------scP3 

( a )  (b)  
Fig. 9 Precedence graph. (a) P1 hungry. (b) P1 eating. 

for fork f. 
Fork f is at philosopher and is dirty. dirty(f 1 

thinking/hungry/eating: State of philosopher. 
Initialization: 
1) All forks are dirty. 
2) Forks distributed among philosophers such that the prece- 

3) If U and v are neighbors then either U holds the fork and v 

The algorithm for each philosopher is described as a set of 

(Rl) Requesting a fork f: 

dence graph is acyclic. 

the request token or vice versa. 

rules guard=>action which form a single guarded command. 

hungry,reqf( f ) ,  N fork( f )  => send(reqtokcnf); 

reqf(f) := false 

(R2) Releasing a fork f: 

- eating, reqf(f),dirty( f )  => scnd(forktokenf); 
dirty(f)  := false; fork(f) := false 

B. An Evolving Community of Dining Philosophers 

In the following we consider the creation of a ring (com- 
munity) of philosophers, addition of a new philosopher (birth). 
and deletion of an existing philosopher (death). Major changes 
in the community are performed as the merging’splitting of 
communities of philosophers. 

I )  Application Contribution for Dynamic Change: To permit 
philosopher nodes to be subject to change we must extend the 
above algorithm to support the management/application inter- 
face described in Section 111. In particular, the algorithm must 
support the passive state and provide initialization (finalization) 
actions when a philosopher is linked (unlinked) to (from) another 
philosopher. The consistency requirements in the system are: 

i) that a fork is always shared between two adjacent, con- 
nected philosophers, and 

ii) that the precedence graph remains acyclic. 
The base case of a single philosopher node is taken care of by 

connecting i t  to itself, thereby permitting it to possess two forks. 
a) Philosopher Passive State: From the definition of passive 

(Section 111) a philosopher is in the passive state if firstly, it is 
not currently engaged in a transaction which it has initiated (i.e., 
it has not sent a reqtoken which has not yet been answered by 
a forktoken) and secondly, it will not initiate new transactions, 
i.e., it is not hungry and i t  will not become hungry. 

True when this philosopher is in the active man- 
agement state. 
True when this philosopher is in the passive state. 
Management request to make philosopher active. 
Management request to make philosopher passive. 

active 

passive 
activate 
passivate 
(R7)* Philosopher thinking to hungry transition: 

active,thinking,thinI;ing time expired => 
hungry := true; thinking := false 

(R3) Receiving a request token for f: (R8) Passive to active transition: 

a c t i v a t e  => assert(active) 
receive(reqtokenf) => reqf(f) := true 

(R9) Active to passive management transition: 

(R4) Receiving a fork token for f: - hungry.passivate = > assert (passive) 

(R5) Philosopher hungry to eating transition: hungry. Since a philosopher can only initiate and be engaged in 
transactions when it is in the hungry state, the above rules satisfy 
the management requirements for active and passive states. Note 
that, when neighboring philosophers are both passive, neither 
is hungry. In this case, the shared fork will be dirty and the 
precedence edge will be directed towards the holder of the dirty 

hungry, fork(left), fork(right) => 
eating := true; hungry := false; dirty(lcft) := trur;  

dirty(rig1it) := true; fork. 
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b) Philosopher Link and Unlink Actions: The following rules 
deal with the actions required to unlink and link a connection 
between philosophers. 

Messages: 
new-forlttoken, Passes new fork f to neighbor which shares 

f for connection initialization. 
new-reqtoken, Passes new request token for fork f to 

neighbor. 
link@,) Management request to initialize a connec- 

tion to philosopher which shares fork f with 
this philosopher. 
Management request to finalize a connection 
to philosopher which shares fork f with this 
philosopher. 
The unique identity of this philosopher. 
The other fork from f that a philosopher uses 
(e.g., other(1eft) = right). 

unlink@,) 

thisp 
other( f) 

(R10) Connection finalization: 

unlink(p,) => 
fork(f) := false; reqf(f) := false; dirty(f) := false 

assert (passive) 

(R11) Initializing a connection top, where p,  = thisp (i.e., this 
philosopher) 

link(p,),pf = thisp => 
fork(f) := true; reqf(f) := false; dirty(f) := true 

assert (passive) 

(R12) Initializing a connection to p, where p, > thisp (i.e., this 
philosopher allocates fork) 

link(pf),pf > thisp => 
if fork (other(f)) then {if the philosopher has 

the other fork} 

send ( new-reqtoken,) 

fork(f) := true; dirty(f) := true; 

else 

reqf(f) := true; send(new-forktokenf) 

assert (passive) 

(R13) Initializing a connection to pf  where pf < thisp (i.e., the 
other philosopher allocates fork) 

link(pf),pf < thisp => 
receive( new-reqtoken,) => reqf(f) := true 

or receive(new_forktoken,) => fork(f) := true; 

dirty(f) := true 

assert (passive) 

Rule (R10) ensures that when a connection between two 
philosophers is unlinked, the shared fork is removed. Rules (R11, 
R,12, R13) are responsible for the allocation of forks when 

When two philosophers are connected together, we can satisfy 
fork sharing by ensuring that only one fork is allocated between 
them. To achieve this, we assume that each philosopher has a 
unique identity and that these identities have a total ordering. 
The philosopher which precedes its neighbor in the total ordering 
decides where a fork is to be allocated. Consequently only one 
fork is allocated. To satisfy preservation of the acyclic precedence 
graph, allocation must be such that at least one philosopher 
ends up having two dirty forks or none. In the following, we 
demonstrate that rules (R12) and (R13) maintain an acyclic 
precedence graph for arbitrary changes. 

2) Creating a Community of Philosophers: The following con- 
figuration specification describes a ring of N philosopher pro- 
cesses: 

RING(p, N )  :: 
forall  i : l..Ncreate p [ i ] ;  

forall  i : 1..N 

link p[i] to p [ ( i  mod N) + 11, 
p [ ( i  mod N) + 11 to p [ i ] ;  

The corresponding change transaction in this case is simply the 
specification with the added activate actions as follows: 

forall  i : 1..N activate p [ i ] .  

To preserve the precedence graph invariant, the forks must be 
distributed asymmetrically such that at least one philosopher has 
no forks and correspondingly one has two forks (see initialization 
conditions for the original algorithm). Rules (R12) and (R13) 
achieve this since the identity of one philosopher must precede all 
others in the total ordering. This philosopher will allocate forks 
to both its neighbors (R12) and consequently have no forks itself. 

3) Birth of a New Philosopher: The following configuration 
specification adds a new philosopher x between existing neigh- 
bors U and v, where the other neighbors of U and v are t and w, 
respectively: 

unlink U from w; unlink w from U 

create x 
link x to w; link x to U; link U to 2; link w to x 

Applying the change algorithm of the previous section to 
the above change specification produces the following change 
transaction. From both the preconditions of unlink and link, the 
quiescent set QS is determined as the two neighbors U, v of 
the node to be created x. The change passive set is t ,  U, v, and 
w. Since neither t nor w will initiate transactions on U or v to 
request forks, U and v can make decisions based on the state of 
their forks which will not change. For example, to insert a new 
philosopher P6 between P5 and P1 in the system depicted in 
Fig. 8, P5 and P1 must be quiescent since they are both linked 
to each other and will be linked to the new philosopher. The 
change passive set includes P2 and P4 as well. Note that, in the 
change transaction outlined below, actions on the same line may 
be executed in parallel. 

connections are linked. 
Rule (R11) deals with the trivial case where there is only 

one philosopher which is connected to itself. In this case the 
philosopher is allocated two dirty forks so that it can eat. Rules 
(R12) and (R13) ensure that the global consistency requirements 
of a system with two or more philosophers are not violated. 

passivate t ,  U ,  w, w; create x 
unlink U from U ;  unlink w from U 

link 2 to w; link x to U; link U to x; link w to 2 

activate t ,  U, w, w, x 
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The fork shared by U and v will be discarded when they are 
unlinked. On linking the pairs U and x,  and x and v, the allocation 
of the shared fork in each case will be made by one of the pair 
such that one of each pair will end up with either two forks or 
no forks..For instance, in the example above of the addition of 
P6, P1 and P 5  will perform the allocation as they precede P 6  in 
the total ordering. If the fork shared by P2 and P1 is currently 
held by P1, then P1 will retain the dirty fork shared with P6; 
and if P 5  does not have the fork shared with P4, then it will 
allocate the other shared dirty fork to P6 (Fig. 10). This clearly 
preserves the acyclic graph. 

4)  Death ofa Philosopher: Removal of a philosopher x with 
neighbors U and v (where the opposite neighbors of U and v are 
f and w, respectively) is specified by the following program: 

remove x 
link 'U to U ;  link U to v 

This results in the following change transaction: 

passivate t ,  U ,  v, w, x 
unlink U from z; unlink PI from 5 

remove x 
link v to U ;  link U to 'U 

activate t ,  U ,  v,  w 

This transaction ensures that U, v, and x will be in the quiescent 
state before x is unlinked and removed. Consequently, on linking, 
U and v can make decisions based on the state of their forks which 
will not change. As before, allocation will ensure that one of the 
pair ends up with two or no forks. For example, if in Fig. 11 we 
removed philosopher P1, P2 would retain the dirty fork shared 
with P 5  as it has the fork shared with P3, thereby preserving 
acyclic precedence. 

5) Merging Two Communities of Philosophers: Given two 
communities (rings) of philosophers, called pa of size N and pb 
of size M ,  respectively, Fig. 12 shows which connections must 
be unlinked and which must be linked to merge the two rings of 
philosophers. The shaded nodes indicate the change passive set. 
The change is specified as follows: 

link 

f r o m  pa [ 11, 
$411 f r o m  p b [ ( l  mod M ) )  + l],pb[(l mod M ) )  + 11 
f r o m  pb[l]; 

p 4 1  to pb[q,Pb[ll to pa[lI; 
pa[(l  mod N ) )  + 11 to pb[(l mod M ) )  + 11, 
pb[(l mod M ) )  + I] to pa[(l mod M ) )  + 11; 

The corresponding change transaction is: 

MERGE-TRANSACTION :: 

passivate~a[~i,~a~li,~a[2il ~ ~ ~ 3 1 , ~ ~ ~ ~ 1 1 ~ ~ ~ ~ 1 1 ~ ~ ~ 2 1 ,  
Pb 131 ; 

unlink p a [  11 f r o m  pa[2], pa[2] f r o m  pa[l] , 
pb[  11 frornpb[2], pb[2] f rompb[ I]; 

P 5  P 2  P 2  

P h - - L P 3  
\ I '  P 4 d P 3  

(a) (b) 

of P6. 
Fig. 10. Addition of a philosopher. (a) Before addition. (b) After addition 

(a) (b) 

Fig. 1 1 .  Removal of a philosopher. (a) Before removal. (b) P1 removed. 

- - I  

Fig. 12. Merging philosopher rings. 

To justify that this change maintains an acyclic precedence 
graph we need only be concerned with the connection between 
philosophers which completes the ring. In Fig. 12, this is per- 
formed between pa[ l ]  and pb[l]  or between pa[2] and pb[2]. 
Rules (R12) and (R13), defined for the linking and unlinking 
of philosophers, ensure that the philosopher which allocates the 
fork on that connection retains the fork if it has the other shared 
fork, otherwise it allocates the fork to its neighbor. In the former 
case, the allocating philosopher will have two dirty forks, in the 
latter no forks. In fact, in the situation where neither the allocating 
philosopher nor its newly connected neighbor has another fork, it 
does not matter where the new fork is allocated since some other 
philosopher must have two forks. This can be easily argued as 
follows: 

There are n philosophers and n forks; the two philosophers 
being connected have 1 fork, consequently the remaining n-2 
philosophers have n-1 forks. Therefore, one of these n-2 philoso- 
phers must have 2 forks. The original algorithm ensures that a 
philosopher cannot hold a clean and a dirty fork simultaneously; 
consequently, the precedence graph must be acyclic. 

Note that inserting a new philosopher into an existing ring of 
philosophers is equivalent to merging a ring of one philosopher. 
RING(newphil,l), with an existing ring. Splitting a ring into two 
smaller rings requires a change specification opposite to that of 
MERGE. As before, the connection which completes each ring 
preserves the global invariant. 
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This section has shown how the management protocol is 
applied to a specific application. Only those philosophers in the 
change passive set are affected by the change allowing the rest 
of the system to proceed with its normal execution. Changes 
can be carried out in parallel as the stable states ensured by node 
quiescence permits consistent decisions to be made during linking 
and unlinking. The different cases described in this example 
have been prototyped and validated in the Conic environment 
for distributed programming [14], [15], [19]. Further work is 
required to integrate the change management states into the 
current environment. 

VI. DEPENDENT TRANSACTIONS 
In the discussions above, we have considered only two party 

independent transactions. We now relax the restriction of in- 
dependence and discuss systems using dependent transactions, 
which involve one or more consequent transactions. In general, 
systems include both independent and dependent two party 
transactions. 

A dependent transaction is a two-party transaction whose 
completion may depend on the completion of other conse- 
quent transactions. 

This is described more precisely as follows: f, is a dependent 
transaction if there exists a chain of transactions t , ,  t,, . . . t ,  in 
which each, with the exception of t,, may depend for completion 
on the completion of its (consequent) successor transaction. We 
do not forbid cycles in this chain, but require that: 

1) progress is made to ensure that the transaction is still 

2) that deadlock is avoided (for example, that it is not a cycle 

We require that the initiator of a dependent transaction is 
informed of the completion of consequent transactions. This 
enables a node to determine when transactions, which it initiated, 
have completed and hence when it  has achieved a passive state. 

bounded, 

of nested transactions). 

A. Extension of the Independent Transaction Approach 

Consider a number of client nodes Ci which access a printer 
server S via their agent Ai and a server manager node M (Fig. 13). 
In this case, a transaction may consist of a sequence of message 
interactions involving Ci, Ai,  M ,  and S .  For instance, C1 may 
initiate transaction s l  to request a print service; completion 
of s l  is dependent on the consequent transactions r l  and p ,  
which A 1  and finally M will initiate to S, to actually print the 
lines. Dependent transactions and their potential consequent(s) 
are denoted as dependent/consequent(s), as illustrated in Fig. 13 
where si is dependent on ri, which is dependent on p .  

The change transaction discussed in relation to independent 
transactions, such as removal of S, would require that M is 
quiescent and all agents Ai, M ,  and S are in the passive state. 
This implies that S could be removed when M and A complete 
their current two party transactions ri and p ,  and S completes the 
associated processing. However, since Ci may still have further 
lines to send (si is not complete and may require further ri and 
p transactions), this is clearly not sufficient to maintain system 
consistency. 

Hence, if the change passive set of nodes consists only of the 
set of nodes which can initiate transactions on a target quiescent 
node plus the node itself, there is no guarantee that the node 
is in the quiescent state. Nodes may still initiate consequent 
transactions on the target node to satisfy completion of arriv- 

Fig. 13. 

ON SOFTWARE ENGINEERING, VOL. 16, NO. 11, NOVEMBER 1990 

r21p 

Client-agent-manager interaction using dependent transactions. 

ing transactions. There are two main approaches to providing 
quiescence in such systems with dependent transactions: 

1) Require that consequent transactions are recognized in the 
application. 

M must recognize that the transactions with S are part of and 
a consequence of a wider transaction, and that the passive state 
can only be reached when that client transaction completes (i.e., 
M must wait for completion of the client use of the printer before 
it can become passive). This approach has the disadvantage of 
having to embed, in the application, knowledge of all the transac- 
tion dependencies. In addition, this information would be hidden 
from the configuration view. Transactions would implicitly ripple 
back and require some time to complete, although we would still 
require that they do so in bounded time. Another possibility is 
to abort transactions with consequents when in the passive state. 
For example, M could abort the client transaction with C .  This 
carries the overhead of complicating C such that it must regain 
consistency after transaction abortion (cf. recovery). Aborting 
reduces dependent transactions to independent transactions at the 
expense of complicating the application code. 

2) Expand the passive set to include all nodes initiating depen- 
dent transactions which result in transactions on the link or node 
targeted for change. 

This requires that transaction dependencies are reflected up to 
and taken account of at the configuration level. Since it is at the 
configuration level that we wish to manage changes, this is the 
preferred approach. 

B. Generalized Passive State for Systems Using 
Dependent Transactions 

The proposed approach for systems using dependent transac- 
tions is to expand the passive set PS(Q) to include those nodes 
which initiate transactions which have consequent transactions on 
the node Q required to be quiescent. However, the passive state 
may not be reachable for nodes utilizing dependent transactions. 
Consider the example in Figure 14. In this system suppose N3 
is in the passive state and N1 has initiated transaction a .  In this 
situation transaction a cannot complete because transaction b can- 
not complete because N3 cannot initiate c .  Consequently, neither 
N1 nor N2 can move into the passive state in bounded time 
if requested. Hence, Proposition I does not hold for dependent 
systems. 

We could consider providing an ordering on the passive set 
such that nodes are made passive in the order of the dependence 
graph. In the example in Fig. 14 we would passivate in the order 
N1 then N2 then N3. However, this order cannot be determined 
in general. In the example in Fig. 15, transaction a/b  requires N1 
before N2, whereas cld requires N2 followed by N1. 

A more appropriate approach is to generalize the definition of 
the passive state to include the means for dependent transactions 
to complete: 

A node in the general passive state must accept and service 
transactions and initiate consequent transactions, but 
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C 

Fig. 14. A system with cyclic dependencies. 

alb 

cld 

Fig. 15. A system with mutual dependencies. 

1) it is not currently engaged in a (nonconsequent) trans- 

2) it will not initiate any new (nonconsequent) transactions. 
Thus a node in the general passive state must respond to 

transactions while it is in the passive state, and, it must initiate 
any consequent transactions required for the completion of the 
transactions to which it responds. For independent transactions, 
the definition of the general passive state reduces to the same 
as passive. 

For example, in Fig. 16, if node N is in the general passive 
state it must not initiate x or y as a result of responding to b 
or c.  However, it may initiate x to permit completion of a.  (For 
conciseness, we henceforth use passive to mean general passive 
where such use is unambiguous.) 

action that it initiated, and 

C. Resultant Properties for Systems Using 
Dependent Transactions 

Proposition 1': Reachability of the Passive state. 
Given the generalized definition of the passive state, 

Proposition 1 holds for systems using both independent and 
dependent transactions. 

Justification 1': 
As for Proposition 1, with the added justification that depen- 

dent transactions will also complete in bounded time even if 
the recipient nodes are in the (general) passive state since they 
respond to and can initiate consequent transactions. 

The definition of quiescence for systems using dependent 
transactions remains the same as that for independent transactions 
(see Section 111). However, as discussed above, the passive set 
must be expanded in order to account for dependent transactions 
which lead to consequent transactions on the node. 

The enlarged passive set EPS for a node Q, EPS(Q), is 
defined as follows: 
1) all nodes in PS(Q) are in EPS. 
2) all nodes which can initiate dependent transactions which 

result in consequent transactions on Q are in EPS. 
Proposition 2': Passive requirements for the Quiescent state. 
Given the generalized definition of the passive state and the 

enlarged passive set, Proposition 2 holds for both independent 
and dependent systems (i.e., if node N and all nodes in the 
enlarged passive set with respect to N are passive, then N is 
quiescent). 

Justification 2': 
As for Proposition 2, with the added justification that all 

nodes which can initiate transactions (independent, dependent, 
or consequent) on N are passive, then all transactions involving 
N will be complete. 

Fig. 16. Independent and dependent transactions on node N .  

Proposition 3': Reachability of the Quiescent state. 
Given the generalized definition of the passive state and the 

enlarged passive set, Proposition 3 holds for both independent 
and dependent systems. 

Justification 3': 
Follows directly from Propositions 1' and 2'. 

D.  Change Rules 

The change rules remain as before, except that the region of 
quiescence where the change is to occur results in an enlarged 
set of passive nodes specified by the EPS. 

E. Composition Rules 

In the foregoing, we have been concerned with flat or one- 
level graphs of connected nodes. However, in general, we are 
concerned with an hierarchic graph structure such that nodes at 
one-level may themselves be implemented as graphs of connected 
nodes at the next level of detail. For example, in the Conic system 
which represents systems as configurations of logical nodes, these 
logical nodes are themselves implemented as a graph of subnodes 
or tasks. The Conic logical node is the unit of change and 
allocation, and the task is the unit of concurrency [19]. To ensure 
that the change management system need be concerned with only 
one level of the configuration graph at a time we must be able to 
derive the transaction dependency relations of a node from those 
of its subnodes. In the following, a node which is composed of 
subnodes is referred to as a composite node. A substitution rule 
can be used to determine the dependencies of composite nodes 
from the dependencies of their constituent nodes. 

Node Composition by substitution: In composing two nodes, 
substitute the consequents for each occurrence of the dependent 
transaction which is hidden by the composition (see Fig. 17). 

For more complex structures, the rule can be used for each 
connection and by repeated application for each node composi- 
tion. For example, consider the fork structure in Fig. 18, where 
a is potentially dependent on b and/or c.  

Internal transactions are not visible in composite nodes. For 
example, each philosopher node of the Evolving Philosophers 
problem can be (and was) implemented as a composite node 
as shown in Fig. 19. This solution structure follows that of [ l]  
(which addresses only the original Dining Philosophers problem). 

The philosopher subnode implements a simple state machine 
to control the transitions between thinking, hungry, and eating, 
while the servant subnode encapsulates the protocols necessary to 
acquire forks. The internal transactions relforks and getforks are 
not visible in the composite node Phil. It should also be noted 
that the dependency of the philosopher transaction getforks on 
the consequent transactions reqright and reqleft (the transactions 
to request a left and a right fork) is not visible in the composite 
node. However, this dependency means that for the node Phil 
to be passive both its subnodes (philosopher and servant) must 
be passive. 

In our prototype implementation of change management in 
Conic, we have adopted the following simplified but pragmatic 
strategy. The change management system views the system as 
a one-level graph of logical nodes. As mentioned above, logical 
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a/c 

v 
Fig. 1 f .  Derived dependencies for simple node composition. 

v 
Fig. 18. Derived dependencies for repeated node composition. 

0 philosopher 0 philosopher 

reqright 

reqright reqlen 

servant 

Fig. 19. Composite philosopher node. 

nodes are both the unit of change and the unit of allocation in 
Conic. Logical nodes are constrained by design to communicate 
by independent transactions so that the management system need 
not be aware of dependency information. The structure of a 
logical node is fixed at node instantiation time. Transactions 
between subnodes can be independent or dependent as shown 
in Fig. 19. To simplify local node management we have 
implemented the rule that a logical node is passive when all its 
constituent nodes are passive. A local entity collates management 
state for each logical node. 

Composition thus provides a coarser grain for system con- 
figuration and dynamic change management. For a finer grain, 
decomposition can be used (where appropriate) to expose the 
internal structure of connected nodes to make them accessible 
to change. 

VII. DISCUSSION AND CONCLUSIONS 
This paper has presented a comprehensive model of change 

management which clearly separates the management respon- 
sibilities and view from that of the application (see Fig. 1). 
In particular, the objectives given in Section I1 have been ap- 
proached as follows. 

Changes should be specified in terms of the system structure, 
Changes are specified in terms of the primitives create, 

remove, link, and unlink which refer only to system structure. In 
fact, changes specified in these primitives could be derived from 
the difference between specifications of the current and desired 
system structures. 

Changes specifications should be declarative. 
It is the derived change transactions which include the change 

control actions (activate and passivate) and specify the paral- 
lelism or sequencing of the actual change execution. 

Change specifications should be independent of the algorithms, 
protocols, and states of the application. 

The node configuration states (active, passive) abstract away 
the specific application states, and provide a convenient means 
for viewing and controlling the application. 

Changes should leave the system in a consistent state. 
The passive and quiescent states together with the possi- 

ble inclusion of connection initialization and finalization code 
provide the application with the means to preserve application 
consistency in a convenient and pragmatic manner. 

Changes should minimize the disruption to the application 
system. 

The change passive set identifies the set of nodes affected by 
a change. In fact, the set is not currently minimal. For instance, 
in the client server example in Section IV, the clients need only 
be passive with respect to the particular server being removed 
and need not actually be prevented from initializing transactions 
on other (unillustrated) nodes. 

Let us consider the connection level further. The current model 
provides for change in the form of creation and deletion of 
nodes, and connection changes. Change which only involves 
connections could place emphasis on each connection rather 
than the entire node which initiates that connection. Thus the 
state of each connection (disconnected or connected-passive or 
connected-active) could be modeled, together with the consis- 
tency preserving actions associated with each connection. This 
leads to a finer grain model in which a node can be active with 
respect to one connection yet passive with respect to another. 
This approach appears to be promising in its ability to describe 
connection changes at a finer level of granularity however, it 
does require more passive substates. Furthermore, the design of 
the connection level actions seems to be more difficult since 
the node and its environment may be partially active thereby 
making consistency more difficult to attain. Hence, although 
our current approach of requiring complete node quiescence 
may not be minimal in terms of the disruption to a system, 
it does seem to be sufficient and far simpler to reason about 
and use. 

A. Dependent and Independent Transactions 

The approach adopted for dependent transactions generalizes 
the passive state of a node to permit initiation of consequent 
transactions and enlarges the passive set to include nodes 
which can initiate dependent transactions with consequents 
on the nodes previously in the set. This expansion of the 
passive set corresponds to our intuition that changes to systems 
which are more interdependent require more global quiescence 
and cause more disturbance (i.e., close-coupling makes change 
more difficult). We believe that the model confirms and, to 
some extent, quantifies that interdependence. One approach 
to alleviating this interdependence, is to compose dependent 
nodes together so that composite nodes communicate using 
only independent transactions. Changes must then be performed 
at a “coarse grain” level on composite nodes rather than on 
constituent dependent nodes. Alternatively, dependent systems 
can be reduced to independent systems for the purpose 
of management, if transactions can be aborted by passive 
nodes. The cost of this is the extra complexity incurred 
by the application to preserve consistency in the presence 
of aborted transactions (cf. atomic transactions). However, 
in real systems, this cost may be inevitable to deal with 
failure. 
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B. Detection of the Passive State 

The transactions used in the model require that the initiator 
is aware of the completion of the transaction, whether it is 
dependent gr independent (see the definition in Section 11). This 
is required i n  order that a node can determine when outstanding 
transactions that it initiated are complete and hence when it is 
passive. If this were not the case, it is possible that a node 
could assume completion of a transaction which was actually 
delayed in communication and still outstanding. This requirement 
could be relaxed to permit, for instance, asynchronous messages 
if the node or management system used some other method 
for detecting termination of transactions. This would require 
use of a distributed termination algorithm such as the diffusing 
detection algorithm of Francez [8]. Assuming that messages do 
not overtake one another, the management system could initiate 
detection by sending queries along the dependency chains of the 
nodes in the passive set and cbtaining confirmation if all nodes 
agree that they are indeed passive. 

C. Related Work 

The changes described in this model are directed at the 
operational system itself, in terms of changes to the software 
components and their interconnections. It can be contrasted with 
the model for change incorporated in the Inscape Environment 
[21] which concentrates on change validation in relation to 
a static definition of the system. Inscape utilizes a semantic 
interconnection model which could form a useful adjunct to our 
model by permitting static change validation before application to 
the system itself. A promising and related approach which could 
be used to model and analyze dynamic configuration changes 
has been suggested using graph grammars (Garp [ l l ]  and A- 
Grammars [ 121). This provides a formal graphical description 
of system structure which is equivalent to our configuration 
specification. Changes are specified in terms of A transitions 
which act on the system structure to produce new structures. 
However, unlike our approach, they have chosen to model aspects 
such as message passing at the structural level, thereby making 
the specification of changes rather more complex than ours at 
the configuration level. Also, their model appears to be purely 
for specification purposes, and gives no indication as to how 
it might be realized. For instance, it is not clear how detailed 
consistency constraints, such as those preserved by the actions in 
the evolving philosophers, could be modelled in A-grammars. 

Pragmatic approaches to dynamic change management have 
tended to concentrate on code replacement. The most simple 
strategies are little more than traditional object code patching 
which relies on recovery to ensure system consistency. More 
recently Frieder and Segal [9] have suggested a scheme for 
procedure replacement which does not require recovery. While 
we ensure that component quiescence will occur, they rely on 
detecting procedure quiescence before performing a change. 
Continuously active procedures can thus not be replaced in 
their scheme. Further, while we are concerned with arbitrary 
restructuring of a system their scheme is firmly focused on 
replacement. 

The transformational approach [2] advocates that changes 
should be dealt with at the formal specification level. The new 
system is then “regenerated” from that changed specification 
using transformational techniques. However, in order to avoid 
regenerating the entire system, the changed parts need to be iden- 
tified and generated. Also, dynamic introduction of the changes to 
an operational system would still need to be supported in some 

way. Given that even the transformational approach needs to 
describe nontrivial systems as some composition of components, 
our model provides a means for obtaining the required structural 
changes from the new structural specification (Fig. 2) and of 
deriving the change transactions for integration of the changes 
dynamically. Hence, although at first sight the two approaches 
appear to be incompatible, our model provides a systematic and 
pragmatic basis which could be used in conjunction with the 
transformational approach. 

D. Further Work 

The paper has concentrated on evolutionary change where 
change is instigated by an agent external to the system. However, 
the change protocol can equally be invoked internally by the 
application. The application can minimize the disruption caused 
by a change by instigating the change when quiescence is 
detected rather than externally imposed. 

Change could also occur as a result of failure. Although 
not explicitly handled by the model, we believe that failures 
can be handled if the nodes incorporate the necessary recovery 
actions. These would be used to restore the remaining system to 
consistency in conjunction with the reconfiguration actions which 
could be triggered by detection of failure. This area requires 
further investigation. 

The management of evolutionary change is a difficult but 
important issue. It is therefore essential that the techniques 
adopted are both practical and soundly based. We believe that 
our approach, with its clear separation of structural management 
and application concerns, is very promising in these regards. 
Some small case studies have been prototyped and tested in the 
Conic environment for distributed programming which provides 
both textual and graphical facilities for performing dynamic 
configuration changes [16]. It now remains to be further refined, 
formalized, and tested on larger case studies. 
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